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Abstract

We employ a duality approach and martingale techniques to characterize
the solutions to a stochastic optimal control problem modeling the choices
available to an economic agent seeking to maximize the expected utility de-
rived from consumption, terminal wealth, and life insurance coverage, while
facing both investment risks and mortality uncertainty. The agent dynami-
cally allocates wealth between a financial market composed of one risk-free
asset and multiple risky assets, and term life insurance premiums subject,
respectively, to uncertainty associated with the market conditions and the
agent uncertain lifespan. Our results provide insights into the trade-offs be-
tween consumption, wealth accumulation, and life insurance demand in the
presence of financial and mortality risks.

o Keywords: Stochastic optimal control; Convex duality; Martingale
methods; Consumption-investment problem; Life-insurance.

e MSC2020 classification: 49N90; 91G15; 91G30; 91G80; 93E20.

1 Introduction

We consider the problem faced by a wage earner who must continuously make deci-
sions about three strategies: consumption, investment, and life insurance purchases
during a random time interval [0, min{r, T'}], where T is a fixed point in the future
representing the wage earner’s retirement date, and 7 is a random variable repre-
senting the time of death. We assume that the wage earner receives income that
ceases either at death or retirement, whichever occurs first. One of our main as-
sumptions is that the wage earner’s lifetime 7 is a non-negative continuous random
variable. Therefore, the wage earner needs to buy life insurance to protect their
family against the possibility of premature death. The life insurance depends on
an insurance premium payment rate p(t), such that if the insured pays p(t)d(t) and
dies during the ensuing short interval of length §(¢), the insurance company will
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pay p(t)/n(t) to the insured’s estate, where 7)(t) is an amount predetermined by the
insurance company. Thus, this is akin to term life insurance with an infinitesimal
term. We also assume that the wage earner seeks to maximize the expected utility
derived from a consumption process with rate ¢(¢). In addition to consumption and
the purchase of a life insurance policy, we assume the wage earner invests all of their
savings in a complete financial market consisting of one money market and a fixed,
finite number of risky securities with diffusive terms driven by a multi-dimensional
Brownian motion. The financial market considered here has a general form, with
all coefficients being progressively measurable stochastic processes, without any as-
sumption concerning the Markov property.

The wage earner must find strategies that maximize the utility of: (i) their fam-
ily’s consumption for all ¢ < min{r,T}; (ii) their wealth at the retirement date
T if they live that long; and (iii) the value of their estate in the event of prema-
ture death. Various quantitative models have been proposed to model and analyze
problems that involve at least one of these three objectives. Yaari [23] consid-
ered the problem of optimal financial planning decisions for an individual with an
uncertain lifetime, in what is generally regarded as the starting point for mod-
ern research on the demand for life insurance. Later, Samuelson [22] and Merton
[15, 16], using methods of dynamic programming, emphasized optimal consumption
and investment decisions without considering life insurance, with Merton focusing
on the problem in continuous time. Richard [20] combined the previous approaches
and analyzed a life-cycle life insurance and consumption-investment problem in a
continuous-time model. Later, Pliska and Ye [19] generalized the previously consid-
ered models, combining more realistic features while considering a different bound-
ary condition that led to somewhat different economic interpretations than those
provided by Richard. Pliska and Ye’s paper considered only one risky security and
assumed that the market was complete. The main difference between Richard’s
paper and Pliska and Ye’s paper is that, while Richard assumed the lifetime of
the wage earner was limited by some fixed number, Pliska and Ye considered that
the lifetime of the individual is a random variable, independent of the stochastic
process associated with the underlying financial market, but allowed to take any
positive value. In this setup, the fixed horizon T is seen as the time when the wage
earner retires. Duarte et al. [6] extended Pliska and Ye’s paper to a more general
setup, allowing for an arbitrary finite number of risky securities and without assum-
ing that the market was complete. We remark that all the references cited above
rely on dynamic programming techniques to characterize (and, in some cases, com-
pute) the optimal controls in feedback form. The use of the dynamic programming
approach is possible due to the assumptions imposed on the underlying financial
market. More precisely, the market coefficients are given by deterministic functions.
This assumption ensures that the Markov property holds for the price processes of
the financial market assets, thereby enabling the use of the dynamic programming
principle.

Duality theory offers an alternative approach to dynamic programming by con-
verting the original stochastic optimal control problem into a more manageable
dual problem. In the primal formulation, the objective is to determine the optimal
control policy and its corresponding value function. In contrast, the dual prob-
lem typically involves identifying a function — often a Lagrange multiplier — that
satisfies specific optimality conditions. Martingale techniques are frequently em-
ployed in this context. Specifically, the dual problem can be interpreted as finding



an optimal martingale measure or adjusting the probability measure governing the
system’s dynamics. In his seminal paper [1], Bismut introduces techniques from
convex analysis and duality theory to analyze stochastic optimal control problems.
In [2], he provides an overview of the fundamental concepts and establishes a frame-
work that shows how duality can simplify the solution of such problems. Pliska [18]
applies convex analysis techniques to study the problem of selecting a portfolio of
securities in order to maximize the expected utility of wealth at a terminal plan-
ning horizon, in cases where security prices are semimartingales. In [9], Karatzas
et al. use martingale techniques to analyze a general consumption and investment
problem for an agent seeking to maximize the total expected discounted utility of
both consumption and terminal wealth. Meanwhile, in [5], Cvitani¢ and Karatzas
employ duality theory to solve portfolio optimization problems under constraints.
The highly influential book by Karatzas and Shreve [11] also deserves mention, as
it provides comprehensive discussions of duality techniques in stochastic optimal
control and mathematical finance. In particular, in [11, Section 3], they address
the problem of joint utility maximization of consumption and terminal wealth in
a complete market, but without considering life insurance or any income beyond
the individual’s initial endowment. Further contributions to the field were made
by Cox and Huang [3, 4], who used martingale techniques to characterize opti-
mal consumption-portfolio policies in the presence of non-negativity constraints on
agents’ consumption and final wealth.

In his seminal paper [1], Bismut introduces techniques from convex analysis and
duality theory to analyze stochastic optimal control problems. In [2], he provides
an overview of the fundamental concepts and establishes a framework for under-
standing how duality can simplify the solution of control problems. Pliska [18] uses
convex analysis techiques to study the problem of choosing a portfolio of securities
so as to maximize the expected utility of wealth at a terminal planning horizon in
the case where the security prices are semimartingales. In [9], Karatzas et al. apply
martingale techniques to study a general consumption and investment problem for
an agent striving to maximize total expected discounted utility of both consump-
tion and terminal wealth, while in [5] Cvitani¢ and Karatzas apply duality theory
to portfolio optimization problems under constraints. We should also mention the
highly influential book [11], by Karatzas and Shreve, which includes comprehensive
discussions of the use of duality techniques in stochastic optimal control and, more
broadly, mathematical finance. In particular, in [11, Section 3], they discuss the
solution to the problem of joint utility maximization of consumption and terminal
wealth in a complete market, without considering the possibility of life-insurance
purchase and without any income apart from the individual’s initial endowment.
Further contributions to the subject were made by Cox and Huang [3, 4] who em-
ployed martingale techniques to characterize optimal consumption-portfolio policies
in the presence of nonnegativity constraints on the agents’ consumption and on final
wealth.

In this work, we employ a duality approach to extend the results of [6, 19] to
a framework that includes financial assets for which the Markov property does not
necessarily hold, thus broadening the current literature on consumption-investment
problems to incorporate the analysis of optimal life insurance purchases. The struc-
ture of the paper is as follows. In Section 2, we describe the financial market model,
the life insurance market, the wage earner’s wealth dynamics based on their deci-
sions, and the utility functions and optimal control problem for the wage earner.



In Section 3, we solve the problem under consideration using martingale methods,
starting with admissible strategies and their hedging, followed by an examination
of the associated static optimization problem. In Section 4, we focus on the case of
deterministic coefficients and apply the earlier results to derive solutions for power
utility functions with constant relative risk aversion and logarithmic utility func-
tions. The paper concludes with final remarks in Section 5.

2 Problem formulation

In this section, we define the setting under which the wage earner makes decisions
regarding their consumption, investment, and life insurance purchases. We begin
by defining the financial and insurance markets, followed by a brief description of
the wage earner’s wealth process, utility functions, and the optimization problem.

2.1 The financial market model

Let T' > 0 be a fixed and finite planning horizon. We consider a complete probability
space (€2, F, P) on which a standard N-dimensional Brownian motion W = {W(t) =
(WO, ..., WN(@)) = t € [0,T]} is defined. Here, and in what follows, we
represent vectors as column-vectors and use the prime sign to denote transposition.

Let {F(t),t € [0,T]} denote the P-augmentation of the filtration generated by
the Brownian motion W, i.e., the sigma-algebras c{W(s),0 < s < t}, for t > 0,
augmented by their P-null subsets. This filtration naturally represents the flow
of information available to any economic agent continuously observing the financial
market. Namely, F(t) can be interpreted as the information available to an investor
at time t € [0, 7). We shall always define progressive measurability of stochastic
processes with respect to this filtration.

The financial market we consider here is composed of a risk-free asset (or a
money market such as a bond) and an arbitrary finite number of (risky) stocks.
The price of one share of the money market and of a certain stock is denoted,
respectively, by (So(t))o<i<r and (S, (t))o<i<r, n =1,..., N, and evolve according
to the following stochastic differential equations:

dSo(t) = So(t)(r(t)dt + dA(2))

N
dS,(t) = Sn(t) (un(t)dt+dA(t)—i—ZonddW(d)(t)), n=1,...,N,
d=1

where 7(-) is a progressively measurable process, called the risk-free rate process,
satisfying

T
/ |r(t)|dt < oo a.s. ,
0

the process A(-) is a progressively measurable, singularly continuous process with
finite variation, u(-) = (u1(+),...,un(-))" is a progressively measurable process,
called the mean rate of return process, that satisfies

T
/ [l ()] dt < oo a.s. |
0



where || -|| denoted the euclidean norm in RY, and o(-) is a (N x N)-matrix-valued
process, invertible for Lebesgue-almost-every t € [0,7T] almost-surely, called the
volatility process, that satisfies

N N T
Z Z/ o2, (t)dt < 0o a.s. .
0

n=1d=1

We also assume that a strictly positive, constant vector of initial stock prices
S(0) = (51(0),...,Sn(0))" is given. For simplicity of exposition and without loss of
generality, we will take the initial price of the risk-free asset to be unitary: Sp(0) = 1.

Additionally, we will suppose that the risky assets are dividend-paying, ¢.e., there
is a progressively measurable process 6(-) = (61(+),...,dn(+))’, called the dividend
rate process, for which

T
/ [|16(¢)]|dt < o0 a.s. .
0

We define the risk premium process «(t) as

a(t) = pu(t) +6(t) —r(H)ly

where 1, denotes the N-dimensional column vector with all components equal to
one, and we define the market price of risk process 0(t) as

0(t) = o(t) " alt) = o(t) ™" (u(t) +6(t) — r(t)Ly) -

Moreover, we will assume that the following integrability conditions hold:

T
/ [16(t)]|* dt < oo a.s.
0

r / 1 r 2 _
em{—A mwaww—5é and%]u

where E[-] denotes the expectation with respect to the probability measure P.
These two conditions ensure that there are no arbitrage opportunities in the finan-
cial market under consideration, and the almost-sure invertibility of the volatility
process o(-) ensures market completeness (see, e.g., [11]).

We will make use of the process Zy(t) defined by

Zﬁﬁwm{jEW@NW@—;Amﬂﬂﬁw}.

We observe that Z; is a local martingale. Moreover, since Zj is bounded from
below, it is a supermartingale. We define the state price density Ho(t) as

0= 2

and assume that it satisfies the integrability condition

E

T
E / Ho(t)dt + Ho(T)| < oo .
0

A sufficient condition for the condition above to hold is that the risk-free asset Sy
is almost-surely bounded away from zero.



Remark 1. In most situations, it is assumed that the market is standard in the
sense that the local martingale process Zy(t) is indeed a martingale, which holds for
instance if the Novikov condition s satisfied:

exp{;/o ||9(t)||2dt}1 <00 .

This allows for the definition of a P-equivalent standard martingale measure on
F(T), to be denoted Py from this point onward, which is given by

E

Po(A) =E[Zo(T)14] , AeF(T),

where I denotes the indicator function of the set A. The standard martingale
measure Py incorporates information about the so called market fundamentals as
given by the market price of risk process 0(-). Furthermore, by Girsanov’s Theorem,
the process

1%@:W@+A%@@ (2.1)

is a Brownian motion under the measure Py relative to the filtration {F(t)} of the
original Brownian motion W (t) (see, for instance, [10, 17]). In the sequel, we will
only make use of the local martingale property of Zy(-).

2.2 The life insurance market model

We suppose that the wage earner is alive at time ¢ = 0 and that their lifetime
is a nonnegative continuous random variable 7 defined on the probability space
(Q, F, P). Furthermore, we assume that the random variable 7 is independent of
the filtration {F(¢)} and has a distribution function F : [0,00) — [0,1] with a
bounded and continuous density function f : [0, 00) — IR™ so that

F@:Pﬁngéf@m.

We define the survival function F : [0,00) — [0,1] as the wage earner survival
probability to at least time ¢:

Ft)y=P(r>t)=1-F(t),

and the force of mortality X : [0,00) — R™ as the instantaneous rate of mortality
of the wage earner measured on an annualized basis:

Pt <t <t+dtlr>1t)
5t—0 ot

We note that the force of mortality A is a continuous and deterministic function
of time ¢, which can be written in terms of the survival function F' and the corre-
sponding probability density function f as

At) = 22 (2.2)



Due to the uncertainty concerning their lifetime, the wage earner buys a life
insurance policy to protect their family against the eventuality of premature death.
The life insurance policy is available continuously and the wage earner buys it by
paying a life insurance premium at a rate p(t) dollars per year. The insurance
contract is like term insurance with an infinitesimally small (instantaneous) term.
If the wage earner dies at time 7 < T while buying insurance at rate p(t), the
insurance company pays an amount p(7)/n(7) to their estate, where n(-) is a posi-
tive, progressively measurable, almost-surely uniformly bounded process, called the
insurance premium-payout ratio, which is fixed by the insurance company. The in-
surance contract ends when the wage earner dies or achieves retirement age at time
T, whichever happens first. Therefore, the wage earner’s total legacy or bequest to
their estate in the event of premature death at time 7 < T is given by

Z(t)=X(1)+ }:,E:_; , (2.3)

where X (t) denotes the wage earner’s wealth at time ¢.

2.3 The wealth process

We will now introduce the wage earner wealth process given their income and choices
concerning consumption, investment and life-insurance purchase. We assume that
the wage earner is endowed with some initial wealth x, and receives income at a
rate i(t) dollars per year continuously over the period [0, min{T, 7}], .e. the income
will be terminated either by death or retirement date, whichever happens first. We
assume that i(-) is a non-negative, progressively measurable process, almost-surely
uniformly bounded. Under such assumption, we have that

T
/ i(t)dt < oo a.s. .
0

The consumption process (c(t))o<i<r is a progressively measurable non-negative
process satisfying

T
/ c(t)dt < oo a.s.
0

and the life insurance premium payment rate (p(t))o<i<r is a predictable process
satisfying

T
/ Ip(t)] dt < oo a.s. .
0

Similarly, the portfolio process (mo(t),m1(t), ..., 7n(t))o<;<p 1S @ progressively
measurable process with my(#) representing the monetary amount invested in the
money market at time ¢, while the components 7, (t), with n = 1,..., N, rep-
resent the monetary amount invested in the risky asset n € {1,..., N} at time
t. We will adhere to a common abuse of language and refer to the process 7(t) =
(m1(t), ..., ™ (1)< ;<7 reflecting the investment in the risky assets also as the port-
folio process. Indeed, under the assumption that the wage earner invests the full
amount of their savings in the financial market (money market plus risky assets),
the amount invested in the money market can always be determined from the 7(t)
via the financing condition

X(t) = mo(t) + 7' (¢)Ly . (2.4)



where X (t) represents the wealth of the wage earner at time ¢. Finally, we will
assume that the following integrability conditions are satisfied:

/ |7’ (H)a(t)|dt < oo as.
0

T
/ I (o)t < 00 as. . (2.5)
0
We conclude this section by observing that wealth process X (t) satisfies the SDE
t
AX(t) = (i(t) —c(t) — p(t))dt + o )dSO(t)
So(t)
o~ lt)
222 (S, (8) 4 6, (t)dt) t>0.
#2G g (@S0 40,00 120

Moreover, we note that m, (t)/Sy (f) gives the number of shares of security n that the
wage earner holds at time t, and that the differential term in the summation above
represents the dynamics of the yield per share of the risky assets. Using the financing
condition (2.4), and the equations governing the asset prices, the discounted wealth
can be written in integral form as

X i) — efu) — p(u) + 7 (w)a(u)
Sl) “/o d

u

So(u)
+/0 ™ W V)

Furthermore, resorting to the Brownian motion Wy(+) under the martingale measure
Py (as defined in (2.1)), the discounted wealth process may be written more concisely
as

X(t) _ ¢ Z(U) — C(’u,) —p(u) t L .
R Tt A i L DL ORI

2.4 Utility functions and preference structures

We will impose only rather general conditions on the utility functions describing the
wage earner preferences. Namely, we will say that a wutility function is a concave,
nondecreasing, upper semi-continuous function U : R — [—00, 00) for which there
exists a nonnegative constant

z=inf{z e R:U(x) > -0} € R

such that U’ is continuous, positive and strictly decreasing on (Z, c0), and it holds
that
lim U'(z) =0 .

T—r00
Let
U'(zt) =limU’(z) > 0
zlT
and observe that the derivative U’ has a continuous and strictly decreasing inverse
I:(0,U'(z")) — (&, 00), which can be continuously extended to the whole half-line
(0, 00] by setting I(y) = z for every y € [U'(z7), oq].



We will now briefly recall the notion of convex dual (see [21, 8] for more results
on convexity and convex duality). The convex dual (also referred to as convex
conjugate) of the function U is defined as

Uly) = sup{U(c) —ay} . yeR.

We can deduce that, for y > 0, the convex dual Uis given by

Uly) = U(I(y)) —yI(y) - (2.7)
In what follows, we will consider triplets (Uy, Us, Us), where Uy, Us : [0, T] xR —
[—00,00) and Us : R — [—00,00), are such that

i) for each fixed t € [0,T], U1(t,-) and Us(t, ) are utility functions (with respect
to their second variable) and each of the following two functions,

c(t) =inf{c €e R : Uy(t,¢) > —o0} (2.8)
and -
Z(t) =inf{z € R : Us(t,z) > —o0} , (2.9)
is continuous on [0, 7] and takes values on [0, c0).

ii) the functions U; and Uy, where the prime denotes differentiation with respect
to the second component, are both continuous on the set

Dy ={(t,¢) €10,T] x (0,00) : ¢>¢(t)},

and the functions Uy and U}, where the prime once more denotes differentia-
tion with respect to the second component, are continuous on the set

Dy ={(t,2) € [0,T] x (0,00) : > Z(t)} .

iii) Us is a utility function.

The functions ¢ and Z defined in (2.8) and (2.9) are called, respectively, subsistence
consumption and subsistence legacy in the case of premature death, and the level of
wealth

z=inf{z e R: Us(z) > —o0}
is called the subsistence terminal wealth.

Since for each fixed t € [0,T] we have that U;(t,-), ¢ = 1,2, is a utility function
with respect to its second variable, we are able to define its convex dual, denoted
Ui(t,), i = 1,2, as already detailed above. The corresponding inverse marginal
utility, i.e. the inverse of the derivative of U; with respect to its second variable
(which, recall, is continuous and strictly decreasing), is denoted I;(¢,-), i = 1,2, so
that relation (2.7) becomes

Uit,y) = Us(Li(t,9)) — yli(ty) , fory > 0.
We also define the analogous functions for Us(-), employing similar notation. Fi-
nally, we extend each of the functions I; (¢, -), I2(t, ) and I3(-) to the whole half-line
(0, 0] as discussed before when describing the general case. Thus, we have that
Ii(t,e) = ¢(t) forall ce [Uf(t,c(t)T), ]
I(t,2) Z(t) for all z € [Us(t, Z(t)1), ]
I3(x) z forallz € [Ui(zT), ] .



Finally, we observe that the functions I; and I are jointly continuous on [0, 7] x
(0, o<].
2.5 Admissible strategies and the optimal control problem

We will describe the set of admissible strategies before introducing the optimal
control problem under consideration herein. We start by defining the wage earner
human capital at time ¢, denoted b(t) and given by

R WO LI
MO = g,y B l/t exp ([ ) ) ] |

where E,[-] = E[- |F(t)] denotes expectation conditional on the sigma-algebra F(t),
i.e., conditional on the information available up to time t. Defining the process

o) = e ([ atwan)

and observing that D(t) > 1 for all £ > 0, we are able to introduce the modified
state price density Ho(t) as
— Hy(t Zy(t
oy M) __Zo0)
D(t)  So(t)D(t)

and to rewrite the wage earner human capital b(t) as

1 T
b(t) = T E; [/t Ho(s)i(s) ds} . (2.10)

Our terminology for the human capital function b adheres to that introduced by
Richard in [20] for the analogue case when all of the processes i(-), So(-) and n(-)
are deterministic. It can be interpreted as the present value (valued at time ¢) of
the wage earner’s future income from time ¢ through to the finite time horizon T,
using for discount factor the modified state price density Hy, i.e., thus accounting
for both the money market and the market fundamentals via its dependence on the
local martingale Zy(-), as well as for the cost of life insurance via its dependence
on the insurance premium-payout rate n(-). Richard interprets this as a certainty
equivalent for the wage earner’s future income, that is assumed to be sure if they
are alive at the time horizon.

Given an initial wealth x, we define the set A(z) of admissible strategies as
follows. If 4+ b(0) < 0, we set A(z) = ). For z+b(0) > 0, A(x) is the set of triples
(¢, m, p) representing the wage earner choices regarding consumption, investment and
life insurance purchase defined in Section 2.3, under the constraint that X (¢)+b(t) >
0 and Z(t) > 0, almost-surely. The quantity X (t) + b(t) may be regarded as the
potential wealth (present wealth plus present value of future income) of the wage
earner at time t. We should note that, in our case, the wealth X (¢) can be negative,
provided it is bounded from below by —b(¢) so that the wage earner potential wealth
is nonnegative. Moreover, if X (¢) 4+ b(t) = 0 the wage earner is in a situation of
bankruptcy, and it can be shown by using the optional sampling theorem that this
state is absorbing, i.e., their future wealth, consumption and legacy will all be zero

10



after the time when bankruptcy occurs, and consequently the premium process
and portfolio will all be zero after bankruptcy. This is analogous to the common
bankruptcy absorbing condition X (¢) = 0 in the case where there is no income.
Finally, the condition Z(t) > 0 may be interpreted as the wage earner choosing not
to leave any debts to their family in the event of premature death.

We will now shift our focus to the statement of our central object of study,
namely, the optimal control problem describing the wage earner choice of admissible
strategies maximizing the joint expected utility of:

1. their family consumption rate over the random time interval [0, min{r, T'}];
2. their wealth at retirement date T, if they survive up to that age;
3. the value of their estate, in the event of premature death.

The wage earner’s problem can then be formulated as follows: for a given initial
wealth z, find admissible strategies (¢, m,p) € A(z) that maximize the expected
utility

V(z) = sup E

min{7,T}
/ Ui(s,c(s))ds + Ua(r, Z(T))I{TST}
(¢,m,p)EA; () 0

+U3(X(T))I{T>T}] , (2.11)
where

Ai(z) = {(C,ﬂ',p) € Az) : El/OT min{0, U1 (s, c(s))} ds

+ min{O, U2 (7', Z(T))}I{TST}
+min{0, U3(X(T))}I{T>T}] > —oo} .

In the case where A (z) = (), we define V(z) = —o0.
The following lemma allows us to restate the above problem as an equivalent
one with a fixed planning horizon (see [7, Lemma 2.3] for a proof).

Lemma 1. Suppose that the random wvariable T is independent of the filtration
{F(t)}. We have that

V(z) = sup E
(e,m,p)EAL(z)

T
/0 F(s)Ui(s,¢(s)) + f(5)Ua(s, Z(s)) ds

+F(T)Us(X(T))|

where F(t) and f(t) are, respectively, the survival function of T and the correspond-
ing force of mortality.

Remark 2. Given the assumptions on the utility functions, for (c,7,p) € Ai(x)
we have that for Lebesgue-almost-every t € [0,T), almost-surely: c(t) > €(t), Z(t) >
Z(t), X(T) > =, otherwise (2.11) would be —co. This further justifies the use of
the terminology subsistence consumption, legacy and terminal wealth.

11



3 Optimal strategies: martingale method

In this section, we discuss certain characteristics of admissible strategies, including
budget constraints. Employing the martingale method approach [11, 12], we solve
first the representation step of the martingale method, which consists of finding
portfolio and life-insurance rules corresponding to given terminal wealth and legacy
processes, which we then optimize.

3.1 Admissibility

In this subsection, we address the representation step of consumption, bequest, and
terminal wealth processes by admissible strategies. We derive a budget constraint
for admissible strategies and show that, if one starts with consumption, bequest
and terminal wealth processes satisfying such budget constraint, it is possible to
replicate these processes behavior by an adequate choice of an admissible portfolio
and life insurance policy purchase.

Using relation (2.3), we obtain from (2.6) that

X() i)~ elt) ~ () Z(u) + ()X ()
Solt) +/o Sola) d

u

[ g o) W)

Applying It6’s lemma to the product of X (¢)/So(t) with 1/D(t) gives

X(0) . [ elw) +n(w)Z)
D(t)&(t)% (1)) du

Ci(w) t 1 ,
=z+ D(u)So(u du—l—/o Wﬂ' (w)o(u) dWo(u) .

Applying It6’s lemma once more, now to the product of the process process above
with Zy(t), and recalling (2.1), allows us to write the discounted wealth process
(with the discounting accomplished by the state price density H(+)) as follows:

+ [ o) (et + 10 Z(w) d
=x+ / Hw)i(u) du + Ho(u) (7' (uw)o(u) — X (u)0' (u)) dW (u) .

Finally, adding H(¢)b(t) to both sides of the identity above and recalling (2.10),
we obtain

Ho(t) (X(t) +b(1)) +/ Ho(u) (c(u) +n(u)Z(u)) du (3.1)

/ H() du

Since the left-hand side of (3.1) is non-negative by admissibility of (¢, p), the
right-hand side of (3.1) is not just a local martingale but, by Fatou’s lemma, a

— ¢ +E, / Ho(u) (' (w)or () — X ()6 (u)) AW (u) .
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super-martingale too. Thus, setting ¢t = T and recalling that b(T) = 0, we obtain
the following budget constraint for every (¢, 7, p) € A(x):

T
E |Ho(T)X(T) —|—/0 Ho(u)(c(u) +n(uw)Z(u))du| < x+b0) . (3.2)

Hence, we may conclude that admissible strategies impose the budget constraint
(3.2).

The representation problem may be regarded as a converse to the previous state-
ment. More precisely, if we start with a consumption process, a non-negative ran-
dom variable representing the target terminal wealth, and a non-negative stochastic
process representing the target legacy in the event of premature death, all of which
such that the budget constraint (3.2) is satisfied, then there is a portfolio process
and a life insurance policy which are admissible and that lead to the target terminal
wealth and legacy in the event of premature death. This is the content of the next
result.

Theorem 1. Let x +b(0) > 0 be given, let ¢(-) be a consumption process, & a non-
negative F(T)-measurable random wvariable, and ¢(-) a non-negative, progressively
measurable process satisfying the budget constraint

T
E / Ho(u) (c(w) + n(u)é(w)) du+ Ho(T)E| = +b(0) >0 .

Then there exist a portfolio process w(-) and a life insurance premium process p(-)
such that (¢, m,p) € A(z), X(T) =& and Z(t) = ¢(t) for all t € [0,T].

Proof. Define the process

J(t) = / o) (c(u) + 1(u) () — i(u)) du

and the martingale o
M(t) =E [J(T) + Ho(T)E] .

Observe that M (0) = . Using the martingale representation theorem, there exists a
progressively measurable IR™ -valued process t(-) with finite Ls[0, 7]-norm almost-
surely, that is

T
1= [ IwiPdu<oo as..
and such that M(-) may be written as
¢
M@t) == —|—/ Y (u) dW (u) .

0

Define a process X (-) by
Ho(®)X () = M) —J(t)

z+/0 w’(U)dW(U)*/O Ho(u)(c(u) + n(u)g(u) — i(u)) du

T
- E / Ho(u)(c(uw) + n(u)p(u) — i) du+ Ho(T)E| . (3.3)

13



Using (2.10), we rewrite (3.3

Ho(t) (X( / Ho () (c(w) + 1(u)b(u)) du

/ HO du

Recalling identity (3.1), suggests defining a portfolio process as
1 _ _
n(t) = = s(0'(1) () + X (1) (o' (1)1 (3.5)

and a premium process by

—z+E /¢ YAW (u) . (3.4)

p(t) = n(t)(o(t) — X(1)) . (3.6)

Substituting (3.5) and (3.6) into the wealth process (3.1), and comparing with

(3.4), we obtain that X(T) = ¢ and Z(t) = ¢(t) > 0, t € [0,T] almost-surely.
Moreover, using (3.3), we have

Hot)(X (1) + / o () (c(u) + n(u)p(u) du+ Fo(T)E|

from which we arrive at X (¢) 4+ b(t) > 0 for all ¢ € [0, T]. Thus, we conclude that
the triple (¢, 7,p) € A(x) is admissible and leads to the target terminal wealth £
and target legacy ¢(-) in the event of premature death.

It remains to check that the portfolio process and the premium process defined
by (3.5) and (3.6) satisfy the integrability conditions (2.5). Observe that M(-) has
continuous paths and that

[|M|| = max |M(t)| < oo a.s. .
0<t<T

Analogously, it holds that ||J|| < oo and ||So|| < oo. Since 7() is uniformly
bounded, we have ||n|| < oo and also ||D|| < co. In addition, observe that k1 =
[1/Zo|| < oo almost-surely, and that ||f]|a < oo almost-surely. This implies that

11/Hol| = 51 [ISol| [ID]| <00 as..
Using Holder’s inequality, we obtain that

T
/0 I () u(t) + 8(2) — r(t) L]

/7Iw 0(t) + |lO)]1* (M (t) — J(t))] dt

< [[1/Holl (Illl2110112 + N[5 ([ + [|.71])) < oo

and so the portfolio process defined by (3.5) satisfies the first integrability condition
of (2.5). We also have that

JRCOECIRT
0

= || el - ore —sw| [ a

< [[1/Hol? (||w||2 +O1EIMI| + [[1)? + 2(] [ M]] + I\JII)IIszII@IIz) <oo,
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and so the portfolio process defined by (3.5) satisfies the second integrability con-
dition of (2.5).
For the premium process defined by (3.6), we have that

/ " o) at

T 1
< [0t (9004 s laa(o - g1 et

Ty o o
S/O FO(t)77(15)Ho(7«‘)¢(7«‘)dt+Hl/HoH [l T(I[ M|+ {1T]])

T
< [|1/Hol| (/0 Ho(t)n(t)o(t) dt + [[nl| T(||M|| + |J||)> < oo,

thus completing the proof that all required integrability conditions are satisfied. [

3.2 Utility maximization

We now address the second step of the martingale method. This step involves
solving a static optimization problem by a Lagrange multiplier argument, taking
advantage of the utility preference structure described in Section 2.4, and making
use of tools from convex duality through the convex dual or convex conjugate trans-
form. This approach will allow us to find the optimal consumption rate, the optimal
legacy in the case of premature death, and the optimal terminal wealth, leading to
the optimal strategies for consumption, investment, and life insurance purchase, to
be found as described in the previous subsection by means of the solution to the
representation step given in Theorem 1.
Before proceesing, we define the auxiliary function

T yHo(t) = yHo(t)n(t)
/0 Ho(t)I; (t, F&) >+n(t)H0(t)12 (t, (}(t)> . (3.7)

X(y)=E

In what follows, we will assume that the auxiliary function X(y) defined above is
such that X' (y) < oo for all y > 0.

The auxiliary function X(-) depends heavily on the utility function structure
described in Section 2.4. Its main properties, which we will use in the sequel, are
stated in the next lemma.

Lemma 2. The following hold:
i) The function X(-) is continuous and non-increasing on (0,00).

ii) Asy— 0T, we have that

X(07):= lim X(y) = o0 .

y—0t
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ii) Asy — oo, we have that X (00) := lim,_,o X(y) satisfies
T* — —_
X(oco)=E [/0 Ho(t)(@(t) +nt)Z(#))dt + Ho(T)ZT| < o0 . (3.8)

iv) The function X(-) is strictly decreasing on (0,1), where r is given by

r=sup{y >0:X(y) > X(c0)} >0 .

Furthermore, when restricted to (0,r) the function X(-) has a strictly decreasing
inverse, which we will henceforth denote as Y : (X(0),00) — (0,7).

Proof. Recalling that the functions I1(t,-), I2(t,-) and I3(-) are continuous and
non-increasing, we see that X'(-) is non-increasing. Appealing to the monotone
convergence theorem, we obtain that X(-) is right-continuous and, additionally,
that assertion ii) holds as all of the functions I1(¢,-), I2(¢,-) and I3(-) approach oo
when the (non-temporal) variables approach zero. Assertion i) is a consequence of
the dominated convergence theorem, after observing that finiteness of X'(-) implies
left continuity of X'(+).

The dominated convergence theorem also implies assertion iii) once we observe
that

lim I (t,¢c) =¢(t) , Zlim L(t,Z)=2Z(t) and lim I3(z)=7.
— 00

c— 00 T—r00

Let r be as given in item iv) of the statement above and let A ® P denote the
product measure of the Lebesgue measure on [0, 7] and the probability measure P
on (Q,F). Take y € (0,r) arbitrary. From the definition of r, we obtain immedi-
ately that X(y) > X(c0). Moreover, comparing (3.7) with (3.8) and recalling the
considerations at the end of Section 2.4, we conclude that either

yHo(t,w)

a0 < Up (t,et)") (3.9)

for all (t,w) in a set of positive A ® P measure, or

yﬁo(t>w)n(tvw)
f(t)

for all (t,w) in a set of positive A ® P measure, or even

<U5(t, Z(1)") (3.10)

yHO(va) ! (—+

1) <Us(z") (3.11)
for all w in a set of positive P measure. Since I(t,-) is strictly decreasing on
(0,U](t,e(t)%)), Is(t, -) is strictly decreasing on (0, Us(t, Z(t)*)), and I3(-) is strictly
decreasing on (0, U}(z 1)), any of the inequalities (3.9)-(3.11) is enough to guarantee
that X (y —€) > X(y) for all € € (0,y). Since the argument above applies to any
y € (0,7), we conclude that X(-) is strictly decreasing on (0,7), thus completing
the proof of assertion iv). O O
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Observe that if (¢, m,p) € Aj(x) we have that

E /0 Ho(t)(c(t) + n(H)2(1)) dt + Fo(T)X(T)| > X(o0)

and that the left-hand side of the inequality above satisfies the budget constraint
(3.2). At this point, we separate the analysis into three cases, depending on whether
x + b(0) is less than, equal to, or greater than X (c0).

In the first case, if  + b(0) < X(c0), we must have that A;(z) = () and, as
consequence, V(z) = —oo.

As for the second case, if x 4+ b(0) = X(o0), any triple (¢, 7, p) € Aj(x) must
satisfy

ct)=¢t), Zt)=2Z(t), and X(T)=1z,

for Lebesgue almost-every ¢ € [0, 7] almost-surely. By Theorem 1, we can find both
a portfolio process 7(-) and a life insurance premium process p(-) corresponding to
the given legacy and terminal wealth. Hence, we obtain that when 2+5b(0) = X' (o0),
the expected utility is given by

T
/0 F(OUL(t,e(t) + f(1)U(t, Z(t)) dt + Us(T) -

The third and last possible case occurs when z + b(0) > X(c0). To proceed
with our analysis, we need to restate our problem in an equivalent form. Namely,
we want to find (¢,7,p) € A;j(x) for the equivalent objective function given in
Lemma 1 subject to the budget constraint (3.2). We use a Lagrange multiplier
argument to find the optimal strategies, i.e. the optimal consumption, legacy, and
terminal wealth. Let y > 0 be a Lagrange multiplier and consider the unconstrained
maximization of

T
E /0 FOUL (L c(t)) + F(OU(t, Z(8)) dt + F(T)Us(X (T))

+y <x+b(0) —-E

T
Fo(T)X(T)+/O Ho(t)(C(t)ﬁL??(t)Z(t))dtD (3.12)

After rearranging (3.12) and considering the convex duals of the utility functions,
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we obtain that

(x+0(0))y +E

T
/0 F(t)Up(t,c(t)) — yHo(t)c(t) dt]

T PR
+E / FOUa(t, Z(8)) — yTHo(t)n(t) Z(2) dt

+8| PO - yHo(1)X (7))
/0 ’ F(t)U, (t, y?g’;ﬁ) dt

/ s U2< yHo(())n()) dt}
. 7)

< (z+0b(0)y+E

+E

with equality if and only if

In order to satisfy the budget constraint (3.2) with equality we must have X (y) =
x+b(0). Since we are assuming that +5(0) > X'(c0) in this third case, by Lemma 2
there is a unique solution to the equation X (y) = x+5b(0), given by y = YV (x+5(0)).
We conclude that the candidates for optimality given by the Lagrange multiplier
method are:

() = 11<t, (“b((?)) “) (3.13)
UH(t) = Ig(t, Yz + (0)(2;[() ()> (3.14)
. (z +b(0))Ho(T)
& = 13( ) ) (3.15)

The next theorem guarantees optimality (3.13)—(3.15).

Theorem 2. Suppose the previous assumptions hold, let x + b(0) € (X (00),00) be
given, and let ¢*(-), U*(-), and £*(-) be as in (3.13)~(3.15). Then there exists an
optimal triple (¢*,7*,p*) € Ay (x) such that X*(T) = &* and Z*(t) = U*(¢):

T
V(z)=E /0 F(U(t,c*(t)) + f(t)Us(t, Z*(t)) dt + F(T)Us(X*(T))
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Proof. The processes defined by (3.13)—(3.15) satisfy the conditions of Theorem 1,
i.e., each is non-negative and, by the definition of the auxiliary function (3.7), we
have that

T
E{ ; Ho(t) (c*(t) +n(t)P*(t)) dt + HO(T)g*] =X(Y(x+b(0)) =z +b(0) .

Thus, the target consumption, legacy and terminal wealth satisfy the budget con-
straint with equality. As a consequence, we obtain that there is (¢*, 7*,p*) € A(x)
such that X*(T) = £* and Z*(t) = U*(¢).

We will now prove that (¢*, 7*,p*) € A;(z). We choose

¢ > max {x, max c(t)}

0<t<T
and
£ > max {,7; max Z(t)} ,
0<t<T
yielding

T
/ |Ur(t, ¢4 2)| + |Ui(t, e+ 2)|dt + |Us(é+ 2)| < o0 .
0

Using convex duality, we obtain that the following three inequalities hold for all
t€[0,T]:

F®)UL(t,c*(t) — Y(x + b(0)) Ho(t)c" (t)

— T (t, V(x +2(((1)))H0(t)> 10
> 7 (1) <U1 ters_ Yt b<02(t)o<t><é T 2)) |
and
FOU(t 27 (1) = V(a +bO)Ho(hn(t) 2" (1)
= /()0 (t, Va+ b(?f)()f()(”"“) ) .
> f(t) (Uz(t, G4 2)— V(+ b(O))]}[ot()t)n(t)(é—i— 2)) |
and
F(T)U(X*(T)) = Y(a + b0 Ho(T)X"(T)
= F(1)Ts (3’ (z + ;<(0T>>)Ho <T>> 19
> F(T) (U3<é Ly Y+ b(ogf;))m(a 4 2))
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Using inequalities (3.16)—(3.18), we obtain
T —
El/o min{0, F(¢t)Us (¢, c*(¢))} + min{0, f(¢)Us(t, Z*(t))} dt

+min{0, F(T)U3(X*(T))}

> ' min{0, F()Uy (¢, ¢+ 2)} + min{0, f(t)Us(t, ¢ + 2)} dt

+min{0, F(T)Us(¢ + 2)}
T
“Y(z +b(0))(@ + 2)E /0 o (t)(1 + (1)) dt + Fo(T)

> —00,

thus concluding the proof that (¢*,7*,p*) € A;(z).

We now prove optimality (¢*,7*,p*) € Aj(x). Let (¢/,n',p') € Ai(x), and
denote by Z’ and X'(T), respectively, the legacy and terminal wealth associated
with (¢/,7',p’). Using convex duality, we obtain that each of the following three
inequalities holds for Lebesgue almost-every ¢ € [0, T:

F()UL(t, ¢ (1) = Y(x + b(0)) Ho(t)e" (¢)
> F(t)UL(t, (1) — Y(z +b(0)) Ho(t)d'(t) ,  (3.19)

and

FOU(t, Z(t) = V(@ + b(0)) Ho(t)n(t) 2" (t)
> f(®)Ua(t, Z'(t)) — V(@ + b(0)) Ho(t)n(t)Z'(t) . (3.20)

and

F(T)U3(X™(T)) — y(ic b(0)) Ho(T)X™(T)
> F(T)U3(X'(T)) = Y(x + b(0)) Ho(T)X'(T) . (3.21)

Using inequalities (3.19)—(3.21), we obtain that

T
E /O F()UL(t,c* (1)) + f(O)Ua(t, Z*(t)) dt + F(T)Us(X™(T))

>E

T
/0 FO)UL (6. (1) + (DU (t, Z'(8)) dt + F(T)Us(X'(T))

E / To(t) (¢ (1) +n(t)Z* (1)) dt + Fo(T)X*(T)

E / Ho(t) (¢/(t) + n()2'(1)) dt + Ho(T)X'(T)

T
>E -/0 F(UL(t, ¢ () + f(t)Us(t, Z'(t)) dt + F(T)Us(X'(T))
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where in the last inequality we have used the budget constraint (3.2) applied to
both the triple (¢/, 7/, p’) and the triple (¢*,7*, p*), the latter of which satisfies the
constraint with equality. We conclude that (¢*, 7*, p*) is optimal and that the value
function has the form given in the statement. O

Remark 3. Assuming that V(x) < oo, from the proof of the preceding theorem we
also obtain that c*(-), Z*(-) and £*(+) are unique almost-everywhere relative to the
product measure of Lebesgque in [0,T] and P. This implies that both the optimal
portfolio 7 (-) and the optimal life insurance premium p*(-) are unique almost-
everywhere.

Combining the optimality results of Theorem 2 and the representation step of
Theorem 1, we arrive at the following result.

Theorem 3. Under the assumptions of Theorem 2:

i) The optimal wealth process is given by
1 T _
X*(t) = mEt [/t Ho(u)(c"(u) +n(u) 2" (u) — i(u)) du
+Ho(T)E"| (3.22)

it) The optimal portfolio is given by

1

= T, OO+ @) X0 (3.23)

m(t)

where ¥(+) is such that
t
M{t)=z+ [ ¢'(u)dW(u)
0
and M(-) is the martingale defined by

M(t) = E, VO Ho(u)(e" (u) +n(u) 2" (u) —i(w)) du+ Ho(T)E"| . (3.24)

iti) The optimal life insurance premium is given by
p(t) =n(t)(Z"(t) — X*(1)) . (3.25)

The optimal wealth process X*(-) given by (3.22) may be written alternatively
as the full wealth process X*(-) + b(+), representing present plus future wealth:

X*(t) +b(t) = Hol(t)JEt l/t Ho(u)(c"(u) + n(u) 2" () du + Ho(T)€"
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4 Solutions for constant relative risk aversion util-
ities

In this section, we will assume that A(-), r(-), 8(-), n(-) and (-) are continuous and

deterministic functions.

4.1 Constant relative risk aversion power utilities

We will now derive the optimal strategies for the case where the wage earner’s utility
functions for consumption, legacy, and terminal wealth are all discounted constant
relative risk aversion (CRRA) power utility functions, given by

C’y
Ui(t,c) = e Pt—
1(t, ) 5
77
Uy(t,Z) = e Pt (4.1)
Y
X7
Us(X) = epr77

where the risk aversion parameter v is such that v < 1 and v # 0, and the time
discount rate p is non-negative.

Differentiating the utility functions in (4.1) with respect to their second variable
(sole variable in the case of Us) and inverting, we obtain

Ii(t,y) = L(t,y) = /O~ Dy /=1 and I3(y) = P/ 0Dt/ (=1
Using these functions in the auxiliary function (3.7), we obtain the relation
X(y) =Xy

which we can then invert to get

z \7!
0= (5m)
Recalling (3.13)—(3.15) and using (2.2), we obtain that

Ft) = ent/(m) (m;(bl()O)) (1;0(%))”(”” (4.2)
& = T/ (33;(1) )(H )) [ (4.4)

Substituting (4.2)—(4.4) into the optimal wealth process (3.22), we obtain the full
wealth process

x + b(0)

X0+ 000 = S

T Ho(u)/ (1)
E, / eP”/(’Y*UM[( u)du
t

F(u)/0-1D

I -1
ot/ -1 Ho(TD) /07D

] o
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where the function K (-) is given by

n(u)’Y/(’yfl)

K(u)=1+ 7/\(11)1/(7—1) .

We will now rewrite the integrand term in (4.5) in a more suitable way. Define
a martingale A(-) as

s =en {1 [vwarw - 377 [ oirad

which may be regarded as the stochastic exponential of the process fﬁG( ). De-
fine also the deterministic function m(-) as being

m(t) = exp (m(t)) ,

m(t) = (pt+/ AMu du) +— (A(t)+/0tr(u)+n(u) du)

7 2
+/0 mH@( u)|)* du .

Then, for all ¢t € [0,T], we have that

1)@(,5)#@—1)

ePt/ (=
F(t)1/(=1)

= m(t)A(t) . (4.6)

Combining (4.6) with (4.5), and recalling that A(-) is a martingale, we rewrite the
full wealth process as

X*() +b(t) = I+TZEl/}( (u) du + m(T)A(T)
_ x(“LbO()tA (/ K(u du+m(T)>. (4.7)

Solving (4.7) for the quantity (x 4 b(0))/X (1), substituting in (4.2) and (4.3), and
using (4.6), we obtain the optimal consumption and legacy in feedback form on the
present full wealth level:

() = (t)< “(t) + b(t)) (48)
Z(t) = (1) + b)) , (4.9)
where X .
olt) = ( / K (u)m( )dU+m(T)>
and



Finally, from (4.9) and (3.25), we obtain that the optimal life insurance premium
is given by
pr(t) = n(Z"() - X*(t))
n(®)((d(t) = )X () + d()b(t)) - (4.10)
To obtain an explicit formula for the optimal portfolio, we first have find the

differential of the martingale M (-) given by (3.24). Substituting (4.2), (4.3) and
(4.4) into (3.24), we get

aerb

M(t) = / K (w)m(u)A(u) du + m(T)A(T)

lOTHO u) du
_ 2340 (/Otmu <>du+A<><>m<t>)

V Holu

Computing the differential of M(-), we obtain

AM(t) = x;(bl()o)e(t)m(t)dA(t)—dIEt

/0 o witu) du]

= Ho(t)(X*(t) + b(t))%&’(t)dW(t) +b(t)Ho(t)0' ()dW (t) .

Combining the stochastic integral representation of the martingale M (-) with (3.23),
we arrive at

m(t) = 1 7(0’(t))_19(t)(X*(t) +0(1))
= (oo 1) ) (X (1) + (D) - (4.11)

1—7

These results coincide with the ones obtained in [6], using dynamic programming
and the Hamilton-Jacobi-Bellman equation, in the case where the financial market is
assumed to be complete, there is no dividend payment, and the singularly continuous
component of the money market is zero. For the economic interpretations of these
results we refer the reader to that paper.

4.2 Logarithmic utilities

We will now derive the optimal strategies for the case where the utility functions
are discounted logarithmic utilities, given by

Ui(t,c) = e *loge
Us(t,Z) = e *logZ (4.12)
Us(X) = e *TlogX,
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where the time discount rate p is non-negative. These utilities may be regarded
as the limit case of the constant relative risk aversion utility functions (4.1) of the
previous subsection when the risk aversion coefficient « approaches zero.
Differentiating the utility functions in (4.12) with respect to their second variable
(sole variable in the case of Us) and inverting, we obtain
—pt epr
and Ify) =

L(t,y) = L(t,y) =

Using these functions in the auxiliary function (3.7), we obtain the relation X' (y) =
X(1)/y, which we can invert to get

where X' (1) is given by
T
X(1) = / e PTE(t) (1 + A(t))dt + e PTEF(T) .
0

Recalling (3.13)—(3.15), we obtain that

* _ efpt F(t)
) = Yl +b(0) Ho(t) (4.13)
Z5t) = e Mt)F@ (4.14)
Y(z +b(0))Ho(t)n(t)
* —pT F(T)
¢ = V(@ +b(0)Ho(T) (419)

Substituting (4.13)—(4.15) into the optimal wealth process (3.22), we obtain that
the full wealth process may be written as

X*(t) + b(t) =

: (4.16)
where a(t) is given by
T p— p—
a(t) = /t e PUF(u)(1 4+ Mu)) du + e PTE(T) .

Combining (4.16) with (4.13) and (4.14), we obtain the optimal consumption and
optimal legacy in feedback form on the present full wealth level:

(1) = ge(MXT(@) +b(t))  and  Z7() = gz(O)(XT(8) +0(1)) ,  (417)

where g.(-) and gz(-) are given by

_nF@) A F@)
gc(t> =e” a(t) and gZ(t) =e” % a(t) .
Combining (4.17) with (3.25), we get
pr(t) = n®)(Z7() - X*(t))

= n(t) ((9z(t) = 1)X"(t) + gz(D)b(t)) -
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To obtain an explicit formula for the optimal portfolio, we recall that a(0) =
X (1) and rewrite the martingale M (-) in (3.24) in the form

][ mao
i

It is then possible to check that M(-) admits the stochastic representation

1

M) = y(x-i—b(O

x+b(0

dM (t) = b(t)Ho(t)0' (t)dW (t) ,

which, combined with (3.23), results in the following explicit representation for the
optimal portfolio

n(t) = (o/(t) O (X (¢) + b(t))
= (o(t)o' (1)) a(t) (X7 () + b(1)) - (4.18)

It is also possible to check that the optimal solutions for logarithmic utilities
given in (4.17) and (4.18) are equal to the optimal solutions for constant relative
risk aversion power utilities given by (4.8), (4.10) and (4.11) when the risk aversion
coeflicient ~ is set equal to zero, which we couldn’t guarantee a prior: since constant
relative risk aversion power utilities are undefined when - equals zero.

5 Conclusions

In this paper, we have employed the duality approach of convex analysis and mar-
tingale techniques to address a stochastic optimal control problem faced by an
agent making decisions about family consumption, financial investments, and life
insurance purchases. By formulating the problem within a general framework that
accounts for both the financial market and life insurance options, we have extended
previous work on consumption-investment problems to include the important di-
mension of life insurance, which has significant practical relevance for risk-averse
individuals planning for uncertain lifetimes.

The use of duality techniques, combined with martingale methods, enabled us
to transform the original dynamic optimization problem into a static one, thus
simplifying the analysis while allowing us to maintain the generality of the model
under consideration. One of the key advantages of the duality approach is its
flexibility in handling non-standard financial market settings, such as those with
incomplete or non-Markovian asset prices. As a special case of our analysis, we
derived optimal strategies for consumption and portfolio selection, as well as life
insurance purchase, for the case of both power and logarithmic utilities.

Future research could further explore extensions to more complex market set-
tings, such as those with stochastic interest rates, labor income, or more general
mortality rates. Additionally, investigating the impact of additional constraints on
consumption and portfolio strategies, such as liquidity restrictions or tax consider-
ations, would enhance the practical applicability of the model.

26



Acknowledgements

This work is financed by National Funds through the Portuguese funding agency,
FCT - Fundacio para a Ciéncia e a Tecnologia, within project UIDB/50014/ 2020.
DOI110.54499/UIDB/50014,/2020 | https://doi.org/10.54499/uidb/50014/2020.

CeBER’s research is funded by national funds through Fundagao para a Ciéncia e
a Tecnologia, I.P., through project UIDB/05037/2020 with DOI 10.54499,/UIDB/05037,/2020.

Filipe Martins thanks Abdelrahim Mousa and Renato Soeiro for fruitful discus-
sions. Part of this work goes back to Filipe Martins MSc dissertation [13], which
was partly supported by the project IJUP 2011, allowing the author to attend the
“Modeling Market Dynamics and Equilibrium: New Challenges, New Horizons”
workshop included in the Hausdorff trimester program “Stochastic Dynamics in
Economics and Finance”, held at the Hausdorff Institute for Mathematics on 19-22
August 2013, greatly contributing to the elaboration of the dissertation.

References

[1] J.-M. Bismut. Conjugate convex functions in optimal stochastic control. Jour-
nal of Mathematical Analysis and Applications, 44(2):384-404, 1973.

[2] J.-M. Bismut. An introductory approach to duality in optimal stochastic con-
trol. SIAM review, 20(1):62-78, 1978.

[3] J. C. Cox and C. Huang. Optimal consumption and portfolio policies when
asset prices follow a diffusion process. Journal of economic theory, 49(1):33-83,
1989.

[4] J. C. Cox and C. Huang. A variational problem arising in financial economics.
Journal of mathematical Economics, 20(5):465-487, 1991.

[5] J. Cvitani¢ and I. Karatzas. Convex duality in constrained portfolio optimiza-
tion. The Annals of Applied Probability, 2(4):767-818, 1992.

[6] I. Duarte, D. Pinheiro, A. A. Pinto, and S. R. Pliska. Optimal life insur-
ance purchase, consumption and investment on a financial market with multi-
dimensional diffusive terms. Optimization, 63(11):1737-1760, 2014.

[7] 1. Ekeland, O. Mbodji, and T. A. Pirvu. Time-consistent portfolio management.
SIAM Journal on Financial Mathematics, 3(1):1-32, 2012.

[8] I. Ekeland and R. Temam. Convez analysis and variational problems. STAM,
1999.

[9] I. Karatzas, J. P. Lehoczky, and S. E. Shreve. Optimal portfolio and con-
sumption decisions for a “small investor” on a finite horizon. SIAM journal on
control and optimization, 25(6):1557-1586, 1987.

[10] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus.
Springer-Verlag, 1991.

[11] T. Karatzas and S. E. Shreve. Methods of mathematical finance. Springer-
Verlag, 1998.

27


https://doi.org/10.54499/uidb/50014/2020

[12]

[13]

[14]

[15]

[16]

[17]

R. Korn and E. Korn. Option pricing and portfolio optimization: modern
methods of financial mathematics, volume 31. American Mathematical Soc.,
2001.

F. Martins. Optimal stochastic control of life insurance and investment in a
financial market. Master’s thesis, Faculty of Sciences of University of Porto,
2013.

F. Martins, D. Pinheiro, Alberto A. Pinto, and Stanley R. Pliska. An overview
of duality theory techniques for the computation of optimal life insurance pur-
chase, consumption and investment.

R. C. Merton. Lifetime portfolio selection under uncertainty: The continuous-
time case. Review of Economics and statistics, 51(3):247-257, 1969.

R. C. Merton. Optimum consumption and portfolio rules in a continuous-time
model. Journal of economic theory, 3(4):373-413, 1971.

B. Oksendal. Stochastic differential equations with Applications. Springer-
Verlag, 2003.

S. R. Pliska. A stochastic calculus model of continuous trading: optimal port-
folios. Mathematics of Operations Research, 11(2):371-382, 1986.

S. R. Pliska and J. Ye. Optimal life insurance purchase and consump-
tion/investment under uncertain lifetime. Journal of Banking & Finance,
31(5):1307-1319, 2007.

S. F. Richard. Optimal consumption, portfolio and life insurance rules for an
uncertain lived individual in a continuous time model. Journal of Financial
Economics, 2(2):187-203, 1975.

R. T. Rockafellar. Conver Analysis. Princeton University Press, 1970.

P. A. Samuelson. Lifetime portfolio selection by dynamic stochastic program-
ming. The Review of Economics and Statistics, 51(3):239-246, 1969.

M. E. Yaari. Uncertain lifetime, life insurance, and the theory of the consumer.
The Review of Economic Studies, pages 137150, 1965.

28



	Introduction
	Problem formulation
	The financial market model
	The life insurance market model
	The wealth process
	Utility functions and preference structures
	Admissible strategies and the optimal control problem

	Optimal strategies: martingale method
	Admissibility
	Utility maximization

	Solutions for constant relative risk aversion utilities
	Constant relative risk aversion power utilities
	Logarithmic utilities

	Conclusions

