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Abstract 

In this paper we conduct an empirical analysis on the performance gains 

of using high frequency data in portfolio selection. Within a CRRA-utility 

maximization framework, we suggest the construction of two different 

portfolios: a low and a high frequency portfolios. For ten different risk 

aversion levels, we compare the performance of both portfolios in terms 

of several out-of-sample measures. Using data on fourteen stocks of the 

CAC 40 stock market index, from January 1999 to December 2003, we 

conclude that the “fight” is always “won” by the high frequency portfolio 

for all the considered performance evaluation measures. 
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1. Introduction 

 
A normal distribution of the returns and a quadratic utility function for 

the investors' preferences are sufficient conditions for the use of the 

classical mean-variance analysis (Markowitz, 1952). However, these 

conditions are seldom verified in practice. At least since Mandelbrot 

(1963), we know that one of the stylized facts of financial time series is 

that the return's distribution exhibits fat tails. Moreover, it has been 

shown that investors have preference for positive skewness (see, e.g., the 

seminal work of Arditti, 1967) and dislike high kurtosis (see, e.g., the 

empirical work of Maringer and Parpas, 2009). In fact, several empirical 

studies suggest that there are performance gains when higher moments 

are taken into account (namely skewness and kurtosis) in the portfolio 

choice (see, e.g., Athayde and Flôres, 2004, Maringer and Parpas, 2009, 

and Harvey et al., 2010).  

During many years, GARCH type estimators (see Engle, 1982, 

Bollerslev, 1986, and Nelson, 1991) and stochastic volatility models (see  

Taylor, 1986) have been used in the financial services industry. However, 

in the begin of the century, motivated by the increasing availability of 

high frequency data, the works of Andersen et al. (2001) and Barndorff-

Nielsen and Shephard (2002) paved the way for the use of realized 

estimators. Since then, both researchers and quants began to dedicate 

special attention to the estimation of the realized variance, i.e., began to 

use intraday data to estimate the variance as the sum of squared returns. 

The realized variance, in theory, offers a great estimation power, since it 

is a model-free measure and converges to the quadratic variation. In fact, 



 

 
 

it was early observed by Merton (1980) that the accuracy of the variance 

estimation increases with the sample frequency (because the sample path 

of the variance is continuous). An approach like the one used for realized 

variance can be designed for the estimation of skewness and kurtosis. 

Thereby, we can define the realized skewness as the sum of the 3rd power 

of intraday returns (see Neuberger, 2012) and the realized kurtosis as the 

sum of the 4rd power of intraday returns (see Amaya et al., 2015). 

Concerning the variance estimation, there are already some studies 

suggesting the existence of benefits in using high frequency data (see, 

e.g., Flemming, Kirby, and Ostdiek, 2003, and Liu, 2009). On the other 

hand, Amaya et al. (2015) found a negative effect of skewness and a 

positive effect of kurtosis on weekly stock returns. However, an important 

question remains open: are there performance gains, for portfolio 

selection purposes, in the joint use of the three realized moments 

(variance, skewness and kurtosis)? This paper contributes empirically, to 

answering this question. Motivated by the work of Brandt, Santa-Clara, 

and Valkanov (2009), we consider a CRRA-utility framework to 

incorporate, not only the first two moments of the returns distribution, 

but also the skewness and kurtosis into the portfolio selection problem. 

The methodological design is the following: Firstly, for a given risk 

aversion level we build two utility-maximizing portfolios - one based on 

daily data (which we designate by low frequency portfolio) and the other 

based on intraday data (the high frequency portfolio). Then, we compare 

the out-of-sample performance of the low and high frequency portfolios 

for ten different risk aversion levels, using seven measures: the out-of-



 

 
 

sample utility, mean, variance, skewness, kurtosis, Sharpe ratio and 

turnover. The analysis is conducted on a dataset of fourteen stocks from 

the CAC 40 stock market index for a five-year period (January 1999 to 

December 2003). These data were provided by the European Financial 

Institute (EUROFIDAI). The empirical evidence is very clear: the high 

frequency portfolios outperform the low frequency portfolios for every 

measure and for any risk aversion coefficient. 

The remainder of the paper proceeds as follows. Section 2 

formulates the basic investor’s problem in portfolio selection and Section 

3 develops that problem including higher moments. Section 4 explains 

the procedures for estimating higher moments using high frequency data. 

Section 5 presents an empirical application on fourteen stocks of the CAC 

40 stock market index. Section 6 concludes the paper.  

2. The investor's problem 
 

Suppose that the investor has a certain wealth to invest in a set of 𝑁 

stocks. In this setting, a portfolio is defined by an 𝑁 × 1 vector, 𝑤, of 

weights representing the proportions of the total wealth invested into the 

𝑁 stocks. Let 𝐸𝑡(𝑅𝑖,𝑡+1), 𝑖 = 1, … , 𝑁, denote the expected return of stock 𝑖 

at time 𝑡 + 1. The portfolio is assumed to be linear in 𝑤1, … , 𝑤𝑁, and thus 

the portfolio expected return, at time 𝑡 + 1, is given by 𝐸𝑡(𝑅𝑝,𝑡+1) =

∑ 𝑤𝑖𝐸𝑡(𝑅𝑖,𝑡+1)𝑁
𝑖=1 . 

 According to the utility maximization criteria and denoting the 

investor's utility by 𝑈(∙), the investor's problem can be formulated as 

 



 

 
 

 

𝑚𝑎𝑥𝑤∈𝑅𝑁 𝐸𝑡[𝑈(𝑅𝑝,𝑡+1)] = 𝐸𝑡 [𝑈 (∑ 𝑤𝑖𝑅𝑖,𝑡+1

𝑁

𝑖=1

)]

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑤𝑖 = 1                                                   

𝑁

𝑖=1

                                                      (1)

𝑤𝑖 ≥ 0,   𝑖 = 1, … , 𝑁                                  

 

 

We have decided not to allow for short-selling, in Problem 

                            (1), since in real markets there are some practical and 

regulatory constraints on short trading positions (especially within the 

European Union). However, we must point out that allowing for short 

selling would not change the rationale of the model. 

3. The investor's problem with higher moments 
 

Supposing that the investor has CRRA preferences, her/his utility is 

given by 

 

𝑈(𝑅𝑝,𝑡+1) = {

(1 + 𝑅𝑝,𝑡+1)
1−𝛾

− 1

1 − 𝛾
𝑖𝑓 𝛾 > 1

𝑙𝑜𝑔(1 + 𝑅𝑝,𝑡+1)        𝑖𝑓 𝛾 = 1

                                                             (2) 

where 𝛾 represents the relative risk aversion coefficient (a higher value of 

𝛾 implies more risk aversion). A CRRA utility allows the incorporation of 

preferences toward higher moments in a parsimonious manner (Brandt, 

Santa-Clara, and Valkanov, 2009). Considering the fourth order Taylor 

expansion of the expected utility, 𝐸𝑡[𝑈(𝑅𝑝,𝑡+1)], around the expected 

return of the portfolio, 𝐸𝑡(𝑅𝑝,𝑡+1), we have  



 

 
 

 

𝐸𝑡[𝑈(𝑅𝑝,𝑡+1)] ≈ 𝑈[𝐸𝑡(𝑅𝑝,𝑡+1)] +
1

2!
𝑈′′[𝐸𝑡(𝑅𝑝,𝑡+1)]𝑉𝑡(𝑅𝑝,𝑡+1)                             

+
1

3!
𝑈′′′[𝐸𝑡(𝑅𝑝,𝑡+1)]𝑆𝑡(𝑅𝑝,𝑡+1)                                                    (3)

+
1

4!
𝑈′′′′[𝐸𝑡(𝑅𝑝,𝑡+1)]𝐾𝑡(𝑅𝑝,𝑡+1)                                                         

 

 

where 𝑉𝑡(𝑅𝑝,𝑡+1) = 𝐸𝑡[𝑅𝑝,𝑡+1 − 𝐸𝑡(𝑅𝑝,𝑡+1)]
2
, 𝑆𝑡(𝑅𝑝,𝑡+1) = 𝐸𝑡[𝑅𝑝,𝑡+1 − 𝐸𝑡(𝑅𝑝,𝑡+1)]

3
 

and 𝐾𝑡(𝑅𝑝,𝑡+1) = 𝐸𝑡[𝑅𝑝,𝑡+1 − 𝐸𝑡(𝑅𝑝,𝑡+1)]
4
 denote the variance, the skewness 

and the kurtosis of the portfolio, respectively.  

 For notational simplicity, let us consider that 𝑎 = 𝑈[𝐸𝑡(𝑅𝑝,𝑡+1)], 𝑏 =

 −𝑈′′[𝐸𝑡(𝑅𝑝,𝑡+1)]/2,  𝑐 =  𝑈′′′[𝐸𝑡(𝑅𝑝,𝑡+1)]/6 and 𝑑 =  −𝑈′′′′[𝐸𝑡(𝑅𝑝,𝑡+1)]/24. Then 

the investor’s problem with higher moments can be formulated as 

 

𝑚𝑎𝑥𝑤∈𝑅𝑁 𝑎(𝑅𝑝,𝑡+1) − 𝑏(𝑅𝑝,𝑡+1)𝑉𝑡(𝑅𝑝,𝑡+1) + 𝑐(𝑅𝑝,𝑡+1)𝑆𝑡(𝑅𝑝,𝑡+1) − 𝑑(𝑅𝑝,𝑡+1)𝐾𝑡(𝑅𝑝,𝑡+1)                                                      

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑤𝑖 = 1                                                                                                                                                                           

𝑁

𝑖=1

 (4)

𝑤𝑖 ≥ 0,   𝑖 = 1, … , 𝑁                                                                                                                                                         

 

 

 In this paper the solutions of Problem (4), where the moments and 

co-moments are estimated using daily returns, are called low frequency 

portfolios and are denoted by 𝑤(𝑙𝑜𝑤). 

4. The investor's problem with higher realized moments 

 
Arguably the use of high frequency data reduces the estimation error of 

the parameters in the portfolio selection problem. Therefore, inspired by 

the works of Andersen et al. (2001), Neuberger (2012) and Amaya et al. 



 

 
 

(2015), we use the realized variance, the realized skewness and the 

realized kurtosis of the portfolio as inputs in Problem (4). 

 Supposing that at day 𝑡 + 1 there are 𝐾 intraday sampling 

periods, the realized variance of stock 𝑖 (with 𝑖 = 1, … , 𝑁) is defined as 

 

𝑅𝑉𝑖,𝑡+1
𝐾 = ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)

2

𝐾

𝑘=1

                                                                                                             (5) 

where 𝑅𝑖,𝑡+(𝑘/𝐾) represents the return of stock 𝑖 in the intraday period 𝑡 +

(𝑘/𝐾).  

 Analogously, the realized skewness, at day 𝑡 + 1, of stock 𝑖 can be 

defined as 

 

𝑅𝑆𝑖,𝑡+1
𝐾 = ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)

3

𝐾

𝑘=1

                                                                                                             (6) 

and the corresponding realized kurtosis is defined as  

 

𝑅𝐾𝑖,𝑡+1
𝐾 = ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)

4

𝐾

𝑘=1

                                                                                                             (7) 

According to the previous definitions, the portfolio realized variance can 

be computed as 

 

𝑅𝑉(𝑤) = 𝑤𝑇Σ𝑤                                                                                                                           (8) 

 



 

 
 

where Σ (of dimension 𝑁 × 𝑁) is the realized covariance matrix, where each 

entry, 𝜎𝑖𝑗, is given by 

 

𝜎𝑖𝑗 = ∑ ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)𝑅𝑗,𝑡+(𝑘/𝐾)

𝐾

𝑘=1

      

𝑁

𝑖,𝑗=1

                                                                                      (9) 

 

 Following Athayde and Flôres (2004), the daily portfolio realized 

skewness can be computed as 

 

𝑅𝑆(𝑤) = 𝑤𝑇Φ(𝑤⨂𝑤)                                                                                                             (10) 

 

where ⨂ represents the Kronecker product and Φ (of dimension 𝑁 × 𝑁2) 

is the realized coskewness matrix. The realized coskewness matrix can 

be seen as the composition of 𝑁 matrixes 𝐴𝑖𝑗𝑙,𝑡+1 each one with dimension 

𝑁 × 𝑁 such that 

 

Φ = [𝐴1𝑗𝑙,𝑡+1 𝐴2𝑗𝑙,𝑡+1 … 𝐴𝑁𝑗𝑙,𝑡+1]                                                                               (11) 

 

where each element, 𝑎𝑖𝑗𝑙,𝑡+1, is given by  

 

𝑎𝑖𝑗𝑙,𝑡+1 = ∑ ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)𝑅𝑗,𝑡+(𝑘/𝐾)𝑅𝑙,𝑡+(𝑘/𝐾)

𝐾

𝑘=1

𝑁

𝑖,𝑗,𝑙=1

                                                              (12) 

 

 Similarly, the daily portfolio kurtosis is given by 

 



 

 
 

𝑅𝐾(𝑤) = 𝑤𝑇Ψ(𝑤⨂𝑤⨂𝑤)                                                                                                     (13) 

 

where Ψ (of dimension 𝑁 × 𝑁3) is the realized cokurtosis matrix. The Ψ 

matrix corresponds to 𝑁2 matrixes 𝐵𝑖𝑗𝑙𝑚,𝑡+1 of dimension 𝑁 × 𝑁 such that  

 

Ψ = [𝐵11𝑙𝑚,𝑡+1 𝐵12𝑙𝑚,𝑡+1 … 𝐵1𝑁𝑙𝑚,𝑡+1 | 𝐵21𝑙𝑚,𝑡+1 𝐵22𝑙𝑚,𝑡+1 … 𝐵2𝑁𝑙𝑚,𝑡+1 | … | 𝐵𝑁1𝑙𝑚,𝑡+1 𝐵𝑁2𝑙𝑚,𝑡+1 … 𝐵𝑁𝑁𝑙𝑚,𝑡+1]  (14) 

 

where each element 

 

𝑏𝑖𝑗𝑙𝑚,𝑡+1 = ∑ ∑ 𝑅𝑖,𝑡+(𝑘/𝐾)𝑅𝑗,𝑡+(𝑘/𝐾)𝑅𝑙,𝑡+(𝑘/𝐾)𝑅𝑚,𝑡+(𝑘/𝐾)

𝐾

𝑘=1

                                    (15)

𝑁

𝑖,𝑗,𝑙,𝑚=1

 

 

Bearing in mind that, for estimating the daily mean return using 

intraday data, only the first and last price observations will matter, the 

investor's problem with higher realized moments can be posed as 

 

𝑚𝑎𝑥𝑤∈𝑅𝑁   𝑎(𝑤) − 𝑏(𝑤)𝑅𝑉(𝑤) + 𝑐(𝑤)𝑅𝑆(𝑤) − 𝑑(𝑤)𝑅𝐾(𝑤)                                                     

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑ 𝑤𝑖 = 1                                                                                                                                  

𝑁

𝑖=1

 (16)

𝑤𝑖 ≥ 0,   𝑖 = 1, … , 𝑁                                                                                                                 

 

 

 A solution of Problem (16) is referred as an high frequency portfolio 

and is denoted hereafter as 𝑤(ℎ𝑖𝑔ℎ). 

 
 
 

 
 



 

 
 

5. Empirical analysis 
 

5.1. Data description 

 
We compared the performance of the low frequency portfolio (solution of 

Problem (4)) with that of the high frequency portfolio (solution of Problem 

(16)) using a dataset from the CAC 40 Index (Euronext Paris). The dataset 

was provided by the European Financial Institute (EUROFIDAI) and 

corresponds to intraday price observations of fourteen stocks (see Table 

1). These intraday data were gathered during each trading session (09:00 

a.m.-17:30 p.m., local time), from January 1999 to December 2003 (1260 

trading days). In the raw dataset, the intraday price observations were 

not synchronized. Such non-synchronization can lead to serious biases 

in the estimation of the moments and co-moments of stock returns (see 

Campbell, Lo, and MacKinlay, 1997, pp. 84-98, for further details). To 

synchronize the data, we used a well-known algorithm, the all refresh-

time method (described in Barndorff-Nielsen et al., 2011). 

 
Table 1. The fourteen stocks from the France Stock Market Index (CAC 40) 

Stock Designation 

AIR LIQUIDE LVMH 
AXA MICHELIN 

CARREFOUR PERNOD RICARD 
DANONE SAINT-AVENTIS 

ESSILOR INTL SANOFI-AVENTIS 
FRANCE TELECOM TOTAL 

L’OREAL UNIBAL 

This table lists the composition of the dataset used in the empirical analysis. The intraday data on 
these stocks, from January 1999 to December 2003, were provided by the European Financial 
Institute (EUROFIDAI).  
 

 

After the synchronization procedure, there are on average about 50 prices 

changes per day (see Figure 1), which corresponds to an average trading 

frequency of 10-minutes. From Figure 1 it is visible an increasing trend 

in the trading frequency during the period under analysis. 



 

 
 

 
Figure 1. Average number of intraday price changes per day 

 
This figure reports the average number of intraday price changes (on the fourteen stocks) per day. 
The horizontal axis corresponds to the number of trading days. The dashed horizontal line 
represents the overall average number of price changes per day.  
 

 

5.2. Out-of-sample performance 

 

To compare the performance of the low frequency portfolio (𝑤(𝑙𝑜𝑤)) with 

that of the high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)), we used a rolling-sample 

approach for a total of 255 evaluation periods (days) (see, e.g., DeMiguel, 

Garlappi, and Uppal, 2009). Firstly, for each risk aversion level (with 𝛾 =

1, … , 10), we computed the low frequency portfolio (solution of Problem 

(4)) and the high frequency portfolio (solution of Problem (16)), for the in-

sample window, from the first trading day of January 1999 to the last 

trading day of December 2002. We held fixed each portfolio and observed 

their returns over the next trading day (first trading day of January 2003). 

Then we discarded the first trading day of January 1999 and included 

the first trading day of January 2003 into the sample. We repeated this 

process until exhausting the 255 trading days of 2003. With this 

procedure, we recorded the time series of daily returns for each of the 10 

different 𝑤(𝑙𝑜𝑤) portfolios and for the corresponding 10 𝑤(ℎ𝑖𝑔ℎ) portfolios. 

 From the recorded out-of-sample daily returns for each portfolio 

(𝑤(𝑙𝑜𝑤) and 𝑤(ℎ𝑖𝑔ℎ)) we computed the out-of-sample utility, 𝑈̂, given by 

 



 

 
 

𝑈̂ = {

(1 + 𝜇̂)1−𝛾 − 1

1 − 𝛾
𝑖𝑓 𝛾 > 1

𝑙𝑜𝑔(1 + 𝜇̂)        𝑖𝑓 𝛾 = 1

                                                                                 (17) 

 

where 𝜇̂ represents the out-of-sample mean return. The results are 

reported in Table 2. We can observe that, for all the ten different risk 

aversion levels, the high frequency portfolio always outperforms the low 

frequency portfolio in terms of out-of-sample utility. 

Table 2. Utility 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 -13.0 -6.92 

𝛾 = 2 -1.39 4.87 

𝛾 = 3 1.17 9.36 

𝛾 = 4 2.38 12.4 

𝛾 = 5 7.64 17.5 

𝛾 = 6 12.5 21.0 

𝛾 = 7 16.0 22.9 

𝛾 = 8 18.4 24.9 

𝛾 = 9 20.6 25.8 

𝛾 = 10 22.2 26.8 

This table reports the out-of-sample utility 𝑈̂ of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and high 

frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-sample utility values 

are multiplied by a factor of 105.  
 

 

 The investor wants to achieve the portfolio with the highest mean 

and skewness and the lowest variance and kurtosis, therefore the 

superiority of the high frequency portfolios may be the result of its 

dominance in any of these dimensions. Strikingly, regardless of the risk 

aversion coefficient, the high frequency portfolio is able to outperform the 

low frequency portfolio in terms of out-of-sample mean (see Table 3), out-

of-sample variance (see Table 4), out-of-sample skewness (see Table 5) 

and out-of-sample kurtosis (see Table 6). 

 

 

 

 



 

 
 

Table 3. Mean 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 -13.0 -6.92 

𝛾 = 2 -1.39 4.87 

𝛾 = 3 1.17 9.36 

𝛾 = 4 2.38 12.4 

𝛾 = 5 7.64 17.5 

𝛾 = 6 12.5 21.0 

𝛾 = 7 16.0 22.9 

𝛾 = 8 18.4 24.9 

𝛾 = 9 20.6 25.8 

𝛾 = 10 22.2 26.8 

This table reports the out-of-sample mean of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and high frequency 

portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-sample mean values are 

multiplied by a factor of 105.  
 
 

Table 4. Variance 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 22.2 19.4 

𝛾 = 2 19.2 17.8 

𝛾 = 3 18.2 17.2 

𝛾 = 4 17.4 16.7 

𝛾 = 5 16.6 15.7 

𝛾 = 6 16.2 15.0 

𝛾 = 7 15.9 14.5 

𝛾 = 8 15.7 14.0 

𝛾 = 9 15.5 13.6 

𝛾 = 10 15.4 13.3 

This table reports the out-of-sample variance of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and high 

frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-sample variance 

values are multiplied by a factor of 105.  
 
 

Table 5. Skewness 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 -50.3 -18.5 

𝛾 = 2 -24.1 -8.89 

𝛾 = 3 -18.0 -6.49 

𝛾 = 4 -13.5 -5.63 

𝛾 = 5 -11.0 -5.05 

𝛾 = 6 -9.71 -4.75 

𝛾 = 7 -8.92 -4.45 

𝛾 = 8 -8.32 -4.02 

𝛾 = 9 -7.73 -3.72 

𝛾 = 10 -7.33 -3.51 

This table reports the out-of-sample utility skewness of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and 

high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-sample skewness 

values are multiplied by a factor of 107.  
 
 
Table 6. Kurtosis 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 77.7 30.0 

𝛾 = 2 34.1 15.9 

𝛾 = 3 24.5 12.3 

𝛾 = 4 17.9 10.5 

𝛾 = 5 14.1 8.93 

𝛾 = 6 12.3 8.03 

𝛾 = 7 11.3 7.40 

𝛾 = 8 10.5 6.85 

𝛾 = 9 9.95 6.45 

𝛾 = 10 9.56 6.16 

This table reports the out-of-sample kurtosis of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and high 

frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-sample kurtosis values 

are multiplied by a factor of 108.  



 

 
 

 

These results present quite strong evidence in the sense that for any 

possible out-of-sample performance measure, involving any of the four 

moments (mean, variance, skewness and kurtosis), the high frequency 

portfolio will always exhibit a better performance than the low frequency 

portfolio. For instance, we may consider the out-of-sample Sharpe ratio, 

𝑆̂ =
𝜇̂

𝜎̂
                                                                                                                                            (18) 

 

where 𝜎̂ represents the out-of-sample standard deviation. Note that when 

the numerator (the out-of-sample mean) of 𝑆̂ is negative, the ratio should 

be refined to achieve a correct rank of the portfolios. The most widely 

used methodology to refine the Sharpe ratio is presented by Israelsen 

(2005): 

 

𝑆̂𝑟𝑒𝑓 =
𝜇̂

𝜎̂𝜇̂/𝑎𝑏𝑠(𝜇̂)
                                                                                                                        (19) 

 

where 𝑎𝑏𝑠(∙) is the absolute value function. The 𝑆̂𝑟𝑒𝑓 is equal to 𝑆̂ when 

the out-of-sample mean is non-negative. Table 7 presents the results for 

the refined Sharpe ratio. The results show that the low frequency portfolio 

always underperforms the high frequency portfolio, for any of the 

considered risk aversion levels. 

 

 

 



 

 
 

 
Table 7. Refined Sharpe ratio 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 -0.002 -0.001 

𝛾 = 2 -0.000 3.650 

𝛾 = 3 0.866 7.145 

𝛾 = 4 1.799 9.621 

𝛾 = 5 5.925 13.97 

𝛾 = 6 9.826 17.12 

𝛾 = 7 12.71 19.03 

𝛾 = 8 14.68 21.03 

𝛾 = 9 16.55 22.17 

𝛾 = 10 17.94 23.27 

This table reports the out-of-sample refined Sharpe ratios (𝑆̂𝑟𝑒𝑓) of each low frequency portfolio 

(𝑤(𝑙𝑜𝑤)) and high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the out-of-

sample refined Sharpe ratios values are multiplied by a factor of 103.  

 
Finally, we also compare the portfolios’ turnover. The turnover may 

be seen as a metric for the trading costs implied by the investment 

strategies, and is here defined as the average, over all time periods, of the 

absolute changes in weights across the 𝑁 available stocks: 

 

𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 =
1

#𝑝𝑒𝑟𝑖𝑜𝑑𝑠
∑ ∑(|𝑤𝑖,𝑡+1 − 𝑤𝑖,𝑡

ℎ |)

𝑁

𝑖=1

                                                        (20)

#𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑡=1

 

 

where 𝑤𝑖,𝑡
ℎ = 𝑤𝑖,𝑡−1

1+𝑅𝑖,𝑡

1+𝑅𝑝,𝑡
. The results are reported in Table 8.  

 
Table 8. Turnover 

Risk Aversion Level Low Frequency Portfolio (𝑤(𝑙𝑜𝑤)) High Frequency Portfolio (𝑤(ℎ𝑖𝑔ℎ)) 

𝛾 = 1 95.2 79.7 

𝛾 = 2 64.0 57.5 

𝛾 = 3 59.3 50.8 

𝛾 = 4 55.0 44.6 

𝛾 = 5 48.3 38.2 

𝛾 = 6 42.7 33.5 

𝛾 = 7 37.9 31.9 

𝛾 = 8 34.8 30.0 

𝛾 = 9 31.9 27.7 

𝛾 = 10 29.1 25.4 

This table reports the turnover of each low frequency portfolio (𝑤(𝑙𝑜𝑤)) and high frequency portfolio 

(𝑤(ℎ𝑖𝑔ℎ)) for ten different risk aversion levels. All the turnover values are multiplied by a factor of 

103.  
 

 

The same pattern, presented in the previous out-of-sample performance 

evaluation measures, was found here, i.e., for the ten different relative 



 

 
 

risk aversion levels the high frequency portfolios outperform the low 

frequency portfolios, meaning that the high frequency portfolios provide 

a saving in proportional trading costs, implying that the superiority of 

these portfolios increase after considering trading costs. 

We also highlight that, for all the performance evaluation 

measures, a surprising pattern was found: the out-of-sample 

performances, both for the low and high frequency portfolios are 

increasing functions of the risk aversion level (𝛾). A possible explanation 

for this puzzling pattern can lies on the fact that with the increase of the 

risk aversion level, the constructed portfolios become closer to the 

minimum variance portfolio, which tends to exhibit a superior out-of-

sample performance (see, e.g., Jagannathan and Ma 2003 and DeMiguel, 

Garlappi, and Uppal 2009). 

 
6. Conclusions 

 
Nowadays the use of big datasets seems to offer a competitive advantage 

in many fields. Particularly in Finance, the increasing availability of high 

frequency data encourages the emergence of new investment strategies 

built on all that information. 

In this paper we have analysed the practical benefits of using 

intraday information in portfolio selection. We have considered a general 

framework where the investor wants to maximize her/his CRRA utility. 

The expected utility was modelled using not only the two first moments 

of the returns distribution but also higher moments, namely the 

skewness and the kurtosis. Within this framework, for a given risk 



 

 
 

aversion level, we have constructed two portfolios: a low frequency 

portfolio, solution of the portfolio choice problem where the inputs are 

obtained from daily data, and a high frequency portfolio, solution of the 

portfolio choice problem where the inputs are obtained from intraday 

data. 

The empirical results, based on fourteen stocks from the CAC 40 

Index, showed a superior daily out-of-sample performance of the high 

frequency portfolio over the low frequency portfolio. For ten different risk 

aversion levels, each high frequency portfolio outperformed the 

corresponding low frequency portfolio in terms of several out-of-sample 

measures (utility, mean, variance, skewness, kurtosis, Sharpe ratio and 

turnover). This empirical evidence suggests the existence of practical real 

gains in using high frequency data for portfolio selection. This is in 

accordance with one elementary principle in statistics: ceteris paribus, 

more data is desirable to less. 
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