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Abstract

A new approach is considered to estimate risk-neutral densities

(RND) within a kernel regression framework, through local cubic poly-

nomial estimation using intraday data. There is a new strategy for the

definition of a criterion function used in nonparametric regression that

includes calls, puts, and weights in the optimization problem associ-

ated with parameters estimation. No-arbitrage restrictions are incor-

porated in the problem through equality and bound constraints. This

yields directly density functions of interest with minimum require-

ments needed. Within a simulation framework, it is demonstrated the

robustness of proposed procedures. Additionally, RNDs are estimated

through option prices associated with two indices, S&P500 and VIX.

1 Introduction

Risk-neutral densities (RND) are determinant when dealing with risk man-

agement and pricing of new derivative products. In recent years, the amount

of information coming from intraday data allows improving and developing of

existing and new approaches. Nowadays, option prices are intensively traded

in several markets, these transactions can reveal market expectations on the

underlying asset, that are reflected in the corresponding RND. In fact, ob-

served option prices have been used to extract information about behaviour

of the underlying asset since they give insights about risk factors associated

with it. RNDs can be used for different purposes, namely to infer about

risk in the market, and to price complex option contracts. A main feature

that must be considered is that RND estimation is an indirect method as no

risk-neutral prices can be observed.

2



We propose a novel approach for risk-neutral density estimation within

the framework of a nonparametric regression setting (Aı̈t-Sahalia and Lo,

1998; Aı̈t-Sahalia and Duarte, 2003; Yatchew, 2003; Monteiro et al., 2008).

This is able to address some main problems presented in previous attempts

found in the literature, such as non-monotonicity and non-convexity of call

and put pricing estimated functions. There are also problems related to viola-

tion of basic requirements associated with a density or distribution function,

its limits, and non-negativity associated with the density. Additionally, we

would expect some degree of smoothness for density estimation since a lack

of regularity is not intuitive.

The novel approach is based on a local cubic polynomial kernel regression

applied to intraday data. First, it yields directly the density of interest with-

out the need of further transformations. Usually, the literature presents esti-

mation processes that retrieve the call pricing function or its first derivative,

and it is necessary to differentiate in order to obtain the density (Aı̈t-Sahalia

and Lo, 1998; Song and Xiu, 2016). Second, it uses compatible information

contained in observed call and put intraday prices without using put-call

parity. When using intraday data, the difficulty in synchronizing call and

put option prices with the underlying asset price can lead to errors (Aı̈t-

Sahalia and Lo, 1998; Fengler and Hin, 2015), our approach prevent these to

occur. This allows to incorporate both prices in the optimization problem,

increasing the amount of information that is retrieved from the market, and

avoid errors from lack of synchronicity. Third, it includes in a smoothly and

intuitive way no-arbitrage constraints in the optimization problem. Smooth-

ness is mainly a result of including no-arbitrage constraints, and two distinct

bandwidths for calls and puts. This allows to adapt the optimization prob-

lem to different data sets. Also, it takes into account that first derivatives of
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call and put pricing functions differ from a constant and second derivatives

are equal. Fourth, in order to account for the relevance of each option price,

we introduce open interest data as weights in the criterion function associ-

ated with the problem. By this way, we add more information on market

perspectives and beliefs.

The approach is tested against simulated data, which can confirm that

the method is able to recover density functions accurately. When applied to

real data sets, constituted by intraday data with a less uniform behaviour,

also gives results that are robust and easily interpreted.

The remainder of the paper is organized as follows, Section 2 discusses

the technical details of the risk-neutral density theory. Section 3 introduces

the nonparametric estimation based on kernel approaches. Monte Carlo sim-

ulated experiments and their discussion are presented in Section 4. Section

5 presents the estimations from market data. In the final section concluding

remarks are exposed.

2 Risk-neutral density through option prices

Cox and Ross (1976) presented the risk-neutral density in the context of

no-arbitrage based models assuming that investors are risk-neutral. Breeden

and Litzenberger (1978) and Banz and Miller (1978) proposed a way of esti-

mating these densities from prices of financial options by considering second

derivatives of option pricing functions.

There are several approaches used to estimate RNDs from option prices.

They are extensive, and can be divided in two main groups: structural and

non-structural models. The former specify a process for the underlying price,

and sometimes for volatility. Non-structural models describe the density
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behaviour without prescribing a stochastic process for the underlying asset.

In this last scenario, nonparametric methods and estimation procedures have

been developed. They are more flexible, usually allow for a wide set of

shapes for densities but require, in general, larger sample sizes. By relaxing

assumptions on the underlying process, these models try to achieve a function

that describes the data. Utilization of nonparametric estimation methods,

based on kernel approaches, to obtain a RND implicit in option prices dates

back to the seminal paper of Aı̈t-Sahalia and Lo (1998), revisited by Aı̈t-

Sahalia and Lo (2000) and Aı̈t-Sahalia et al. (2001). The main idea was to

overcome some drawbacks associated with a parametric setting.

Usually, this kind of nonparametric estimators present rates of conver-

gence substantially lower than their parametric counterparts, and to obtain

similar degrees of accuracy far larger sample sizes are needed. This fact is

even more relevant when we are considering estimators for first or second

derivatives, which is fully addressed by general references for nonparamet-

ric methods as Fan and Gijbels (1996), Yatchew (2003), Härdle (1990), Li

and Racine (2007), and for the specific application to RND estimation by

Aı̈t-Sahalia and Duarte (2003).

There are different goals when considering kernel estimation procedures

dealing with no-arbitrage constraints. Jackwerth (2000) computed a subjec-

tive distribution based on a kernel estimator. Rosenberg and Engle (2002)

estimated risk aversion by considering a kernel function depending on the

maturity. Aı̈t-Sahalia and Duarte (2003) proposed shape restrictions for the

optimization problem considering local polynomial estimation. Yatchew and

Härdle (2006) and Härdle and Hlávka (2009), using smoothing splines, also

imposed constraints on the estimation problem, in order to guarantee con-

vexity and monotonicity for call pricing functions. Monteiro et al. (2008)
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proposed a nonparametric approach with no-arbitrage constraints based on

cubic splines through a semidefinite programming problem. Zhang et al.

(2009) considered a local polynomial estimator together with a method based

on Gram-Charlier series expansion to obtain RNDs. Song and Xiu (2016)

considered a nonparametric kernel approach for estimate RND including

volatility factors. They used local linear estimators for first derivatives of

option pricing functions using end-of-day data from S&P500 and VIX.

Data length is an important issue in any estimation process. Aı̈t-Sahalia

and Lo (1998), and most of the subsequent studies, considered extensive time

series. Most papers from the literature consider data from a large time period

and assume the estimated risk-neutral density as an average of densities.

Recently, intraday data has become more accessible, and the amount of data

collected in a few days gives enough information to infer RNDs. Dalderop

(2018) estimates time-varying RNDs by considering a kernel estimator as a

function of time and moneyness applied to intraday data. The author uses

different order approximations: local constant for time dimension and local

cubic for moneyness.

Several frameworks have been used to derive call option prices, which by

no-arbitrage arguments must be associated with a portfolio without risk and

risk-free interest rate. It has been found that corresponds to calculate the

expected future option value at expiration, computed through a risk-neutral

density measure, Q, discounted by the risk-free interest rate, which can be

expressed as

C(St, X, σt, τ, r, δ) = e−rτEQ [(ST −X)+
]

= StQS(ST > X)−Xe−rτ Q(ST > X)

= St P1 −Xe−rτ P2.
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where t represents the current date, X the strike price, r the risk-free interest

rate, St the current underlying asset price, ST the asset price at maturity,

τ = T − t the time-to-maturity, and δ the dividend yield. A main difference

from Black-Scholes’ formula is related to probabilities P1 and P2 measured

through risk-neutral densities. The formula reveals that option price depends

mainly on the underlying stock and strike prices. Different variations can be

considered by changing the structure of P1 and P2, which allows the use of

mean pricing functions in different contexts through minor changes.

Consider an economy with two state variables, the price of S&P 500

index S, and an unobserved volatility V . Since the volatility is determinant

for pricing S, consider also the VIX option market and denote the variable by

Z. As there are no contingent claims written on V , we will consider option

contracts on the volatility index VIX in order to estimate the risk-neutral

densities of S and Z.

The call option price for contracts on S can be given by

C(St, X, σt, τ, r, δ) = e−r τ
∫ ∞
X

(ST −X) g(ST |St, σt, r, δ, τ) dST ,

where g(·) represents the conditional risk-neutral density for the underly-

ing asset at expiration T. Considering the same assumptions, the price of a

European put option is

P (St, X, σt, τ, r, δ) = e−r τ
∫ X

0

(X − ST ) g(ST |St, σt, r, δ, τ) dST .

The price of a VIX call option with strike L can be given in a similar way

by

J(Zt, L, σt, τ, r, δ) = e−r τ
∫ ∞
X

(ZT − L)h(ZT |Zt, σt, r, δ, τ) dZT ,

where ZT is the VIX price index on the maturity, and h(·) is the conditional

risk-neutral density for ZT .

7



Breeden and Litzenberger (1978) and Banz and Miller (1978) proposed

a relation between second derivative of the call option price, with respect to

the strike price, and the risk-neutral density:

∂C(St, X, σt, τ, r, δ)

∂ X
=

∂
(
e−r τ

∫∞
X

(X − ST ) g(ST |St, σt, r, δ, τ) dST
)

∂X
(1)

= e−r τ (G(X|St, σt, r, δ, τ)− 1), (2)

where G(·) is the respective distribution function associated with g(·). The

second derivative is then expressed as

∂2C(St, X, σt, τ, r, δ)

∂ X2
= e−r τ g(X|St, σt, r, δ, τ) (3)

and the risk-neutral density at expiration is

g(X|St, σt, r, δ, τ) = erτ
∂2C(St, X, σt, τ, r, δ)

∂ X2
|X=ST

.

The risk-neutral density can be established in an equivalent form using

puts as was considered for calls,

∂P (St, X, σt, τ, r, δ)

∂ X
= e−r τ G(X|St, σt, r, δ, τ) (4)

and
∂2 P (St, X, σt, τ, r, δ)

∂ X2
= e−r τg(X|St, σt, r, δ, τ). (5)

g(X|St, σt, r, δ, τ) = erτ
∂2 P (St, X, σt, τ, r, δ)

∂ X2
|X=ST

.

Considering the VIX options

∂J(Zt, L, σt, τ, r, δ)

∂ L
=

∂
(
e−r τ

∫∞
X

(L− ZT )h(ZT |Zt, σt, r, δ, τ) dZT
)

∂L

= e−r τ (H(L|Zt, σt, r, δ, τ)− 1),

where L represents the strike price, and H(·) is the respective distribution

function associated with h(·)

h(ZT |Zt, σt, r, δ, τ) = erτ
∂2 J(Zt, L, σt, τ, r, δ)

∂ L2
|L=ZT

.
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By combining first and second derivatives of call and put pricing functions,

we obtain some constraints to be imposed to our optimization problem. Since

pricing functions in this context are homogeneous of degree one in the strike

(Fengler and Hin, 2015; Song and Xiu, 2016), we can scale strikes and prices

without changing the relation between variables.

3 Nonparametric estimation

A cornerstone for nonparametric methods applied to RND estimation is given

by the seminal paper of Aı̈t-Sahalia and Lo (1998). It is stressed out its

importance, and how with sufficient amount of data, it is possible to get rid

of constraints imposed by some difficult to justify parametric approaches.

Nonparametric approaches offer more flexible methods for modelling mean

function option prices on strikes and other relevant variables. The second

derivative has been shown to be related with RNDs. Using Aı̈t-Sahalia and

Lo (1998) notation, suppose there is a smooth function H(·) that can be

seen as an option pricing function depending on a vector Z, set as Z =

(St, X, τ, r, δ). A possible nonlinear relationship is established as

Hi = H(Zi) + εi, i = 1, . . . , n

assuming εi as a white noise.

Nadaraya-Watson (NW) estimator is commonly used (Nadaraya, 1964;

Watson, 1964), and assumes the form

Ĥ(Zi) =

∑n
i=1Kh (Zi − Z) Hi∑n
i=1Kh (Zi − Z)

,

which can be seen as a weighted mean average of the H ′is. A kernel function

Kh(·), depending on a bandwidth h, for a given point Z, defines the weights.
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The application of this estimator can be challenging. As nonparameteric

methods are data intensive, their effectiveness rapidly decreases as problem’s

dimension increases (number of explanatory variables). Without imposing

adequate constraints, estimates can contradict basic economic principles and

even common sense. To overcome this problem Aı̈t-Sahalia and Lo (1998)

proposed some justifications for dimension reduction, and estimated RNDs by

an indirect way, through an estimator for implied volatility, which is plugged-

in Black-Scholes’ formula. By this approach, it is natural that RNDs inherit

most characteristics obtained using a parametric model as the one referred.

To address some problems associated with estimation procedures pro-

posed in Aı̈t-Sahalia and Lo (1998), Aı̈t-Sahalia and Duarte (2003) revisited

the problem, and a new approach was proposed that has been followed in sub-

sequent literature. Instead of local constant kernel regression, a more general

setting was proposed based on local polynomial regressions, but more impor-

tantly, it was highlighted the importance of shape restrictions on mean pric-

ing functions, and respective derivatives for obtaining meaningful results. A

univariate setting is adopted making option prices depending only on strikes,

and obtaining similar accuracy using fewer observations. Estimators were

subjected to a series of shape constraints, and a kind of double smoothing.

They devised a two-step procedure which incorporates an intricate optimiza-

tion problem, followed by a kernel smoothing estimation for obtaining the

desired densities.

NW estimator can seen as a local constant kernel regression type es-

timator. Some drawbacks associated with it can be softened by a more

general approximation. Let us consider for simplicity a general formulation

yi = m(xi)+εi. For a local polynomial of order p, kernel regression estimators
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are obtained by solving the problem

minimize
n∑
i=1

(
yi −

p∑
k=0

βk(x)
(xi − x)k

k!

)2

K

(
xi − x
h

)
,

where the decision vector is β(x). This general formulation encompasses

constant (p = 0), linear (p = 1), quadratic (p = 2), and cubic (p = 3) or-

ders. Compared with NW estimator, nonparametric local linear polynomial

approximation (p = 1) represents an important improvement in terms of

flexibility and estimator’s properties (Fan and Gijbels, 1996). Applying a lo-

cal p-order polynomial criterion, the mean function estimator and respective

derivatives are given directly by m̂(x) = β̂0(x), and m̂(k)(x) = k! β̂k(x).

Several authors accommodate no-arbitrage constraints in the definition

of nonparametric estimates for RNDs, as already mentioned. Aı̈t-Sahalia

and Duarte (2003), but also Yatchew and Härdle (2006), used constrained

nonparametric least squares, where constraints are defined through a penalty

component, expressed by the Sobolev norm, which needs a function called

representor, making this approach less intuitive, and not easy to implement.

Birke and Pilz (2008) address the problem using an auxiliary inverse function

associated with call pricing function first derivative, that needs to be inte-

grated or differentiated for obtaining call pricing functions or risk-neutral

densities, respectively.

We devise an alternative procedure in comparison with aforementioned.

In contrast, a simple and intuitive framework to include no-arbitrage con-

straints directly in a criterion function is developed. A fact not fully explored

in literature is related to derivation of risk-neutral densities using information

contained directly in both calls and puts. As functions of strikes, call and

put prices move in opposite directions, and also the variability. In left tail

call prices vary more than puts, and vice versa in the right tail. Expressing
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parameters, in a criterion function, as values of risk-neutral distributions and

densities (the latter coincides for calls and puts) allows easily to impose no-

arbitrage constraints. The contrast (variability) between call and put prices

can be used as a valuable source of information to define robust estimation

procedures.

3.1 Nonparametric with no-arbitrage constraints

When RNDs are estimated implicitly through option prices, it is desired to

obtain a smooth function. Most area must be associated with a neighbour-

hood around current value of the underlying asset, and on tails direction,

density values must tend to zero. A fundamental problem is how tails be-

have, their rate of convergence to zero, and comparisons between left and

right tails.

No-arbitrage constraints are intimately related to monotonicity and con-

vexity that are established characteristics of call and put pricing functions.

Following Birke and Pilz (2008), no-arbitrage constraints assume the form

−e−r τ ≤ ∂C

∂X
(X) ≤ 0

∂2C

∂X2
(X) ≥ 0

C(X) ≥ 0, ∀X ∈ [0,∞[.

Using put-call parity, the same kind of constraints can be associated with

put pricing functions,

0 ≤ ∂P

∂X
(X) ≤ e−r τ

∂2P

∂X2
(X) ≥ 0

P (X) ≥ 0 ∀X ∈ [0,∞[.
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Using these constraints, we define an extended criterion function within a

constraint nonparametric regression framework.

Let us designate ci and pj observed prices for calls and puts, with re-

spective strikes xi and xj for i = 1, . . . , n and j = 1, . . . ,m. The proposed

criterion function is an extension of a local cubic polynomial approximation

within a nonparametric regression setting. The extension accounts jointly

call and put prices. This has the advantage of representing a contrast of

information, and also allows no-arbitrage constraints straightforwardly.

In a kernel regression framework, where local approximations are defined

around x, kernel functions serve to weight the distance of sample observations

to x. Two kernel functions are considered, K((xi − x)/hc) for calls, and

K((xj − x)/hp) for puts, accounting for different bandwidths, hc and hp. As

it is well documented in the literature (Härdle, 1990; Fan and Gijbels, 1996;

Yatchew, 2003; Li and Racine, 2007), these parameters have a major influence

for the adjustment in a kernel regression framework, namely, in comparison

with the choice of kernel function. This fact leads to consider only Gaussian

kernels, although different kernel functions were tested without significant

changes.

By relaxing the assumption of a white noise for error terms in the mean

function, different weights are associated with each observation. More infor-

mative observations are ones represented by at-the-money prices, deep-in-the-

money or deep-out-the-money are less informative. These can be weighted

by volume or open interest values, represented for calls by wi,c, and for puts

by wj,p.

The estimation is performed by minimizing a criterion function subject
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to a set of linear and bound constraints,

minimize
n∑
i=1

wi,c

(
ci − β0,c(x)−

3∑
k=1

βk,c(x)
(xi − x)k

k!

)2

K

(
xi − x
hc

)
+

n∑
j=1

wj,p

(
pj − β0,p(x)−

3∑
k=1

βk,p(x)
(xj − x)k

k!

)2

K

(
xj − x
hp

)
(6)

subject to

−β1,c(x) + β1,p(x) = e−rτ (7)

β2,c(x)− β2,p(x) = 0 (8)

max(0, St − x e−r τ ) ≤ β0,c(x) ≤ St (9)

max(0, x e−r τ − St) ≤ β0,p(x) ≤ ∞ (10)

−e−rτ < β1,c(x) < 0 (11)

0 ≤ β1,p(x) ≤ e−rτ (12)

β2,c(x) ≥ 0 (13)

β2,p(x) ≥ 0. (14)

For each local approximation at x, the problem can be characterized as

a Generalized Least Squares (GLS) problem with constraints, which can be

solved as a Quadratic Programming (QP) problem. Let us designate y as

the observations vector for call and put prices, and consider matrices Xc(x)

and Xp(x), with typical rows i and j given by

Xi,c(x) = [ 1 (xi − x) (1/2)(xi − x)2 (1/6)(xi − x)3]

Xj,p(x) = [ 1 (xj − x) (1/2)(xj − x)2 (1/6)(xj − x)3]

for the vectors and matrix defined as

y =

 c

p

 , β =

 βc

βp

 , X =

 Xc(x) 0

0 Xp(x)

 .
14



Given a matrix of weights represented by W , and a “kernel matrix” K =

K(hc, hp), the minimization problem is expressed as a quadratic optimization

problem

minimize (y −X β)>W 1/2KW 1/2(y −X β)

subject to β ∈ B

where B is the set of constraints. By considering

y∗ = W 1/2K1/2 y

X∗ = W 1/2K1/2X

the latter can be rewritten as a norm minimization problem subject to convex

constraints,

minimize ||y∗ −X∗ β||

subject to β ∈ B

which can be translated to a QP optimization problem

minimize β>H β + f>β

subject to β ∈ B

where H = X∗>X∗ and f = −X∗> y∗.
By applying a local cubic polynomial approximation the estimates at

each point x are obtained for βi,j(x), with i = 0, 1, 2, 3, j = c, p. The

main aim are the estimates β̂2,c(x) and β̂2,p(x), with β̂2,c(x) = β̂2,p(x), that

represent the risk-neutral-density’s value at x. Several sources of information

are considered, namely the contrast between call and put prices evolution.

Equally important are constraints implied by no-arbitrage arguments that

act as smoothing components, to obtain more reliable and intuitive RND

estimates.
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3.2 Bandwiths and weights selection

The distance to a point x, defining locality, must be taken into account,

and in nonparametric regression methods this is done by a kernel function,

symmetric around x, and that integrates one. Kernel functions depend on

the distance of observations to x, scaled by a bandwidth parameter, which is

recognized as the most relevant factor in terms of characteristics and quality

of model fitting.

When approximating a mean function, using the Mean-Square Error

(MSE) criterion, an optimal bandwidth is chosen through a min-max op-

timization problem, which is related to a trade-off between bias and vari-

ance. An MSE criterion allows the definition of a local optimal bandwidth,

which depends on many factors, for example, sample size, curvature of the

mean function, distribution of design variables, and their respective variance.

Usually these quantities are unknown.

Local optimal bandwidths are difficult to define. A common approach

tries to approximate a global optimal bandwidth, which is defined through

minimization of the Mean Integrated Square Error (MISE). In some cases, it

is possible to define an analytic expression to the global bandwidth, however,

it depends on unknown quantities. In practical terms, to define the optimal

global bandwidth, Cross Validation (CV) methods are used. An obtained

value is asymptotically optimal through the MISE criterion.

In developed results, two bandwidths were considered, hc related to call

observations, and hp to puts. We apply CV to obtain a first approximation

as only observed values and estimated means can be compared. Considering

again a general setting, yi = m(xi) + εi, i = 1, . . . , n, and using the common
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approach for CV, which is leave-one-out, h is chosen by

minimize CV (h) =
1

n

n∑
i=1

(yi − m̂−i(xi))2W (xi),

where m̂−i(xi) is the leave-one-out kernel estimator of m(xi), and W (·) is a

weight function, see Li and Racine (2007).

Adapting CV to define hc and hp, we take into account a fixed design

framework, where for each xi, i = 1, . . . , n, ki observations for y are available,

which means that we have to implement the procedure leave-ki-out. The CV

criterion is modified, and bandwidths are chosen by

minimize CV (hc, hp) =
1

n

n∑
i=1

ki∑
j=1

(yc,j − m̂c
−ki(xi))

2Wc(xi) +

1

n

n∑
i=1

ki∑
j=1

(yp,j − m̂p
−ki(xi))

2Wp(xi),

where kernel estimator for calls m̂c
−ki(xi) depends on hc, and for puts m̂p

−ki(xi)

depends on hp. Weight functions used, Wc(xi) and Wp(xi), will also be

different for calls and puts, reflecting choices done when the criterion function

for parameters estimation was defined.

Weights used for parameters estimation and CV account for the distance

between observations and a point representing at-the-money prices. As hc

and hp define a neighbourhood around x, elements of Wc(·) and Wp(·) repre-

sent distance to a point where observations carry more information (at-the-

money). In this paper, the proxies considered for these weight functions are

open interest values associated with call and put option contracts.
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4 Monte Carlo analysis

In this section, we present a simulation analysis that demonstrates effective-

ness of the methods proposed in this study. Risk-neutral prices are not di-

rectly observable but can be inferred indirectly through option prices. Except

in the case of simulated data, no confrontation between true and estimate

RND can be done.

It is assumed that the stochastic process associated with an underlying

asset is given by a diffusion process subjected to stochastic volatility, which

can be represented as

dSt = µdt+
√
vt St dWt

dvt = κ(θ − vt) dt+ σ
√
vt dZt

whereWt and Zt are two standard Brownian motion processes with E(dWt dZt) =

ρ dt, κ represents the mean-reverting volatility parameter, θ the long-run

volatility, and σ the volatility of volatility. Under certain assumptions, given

in Heston (1993), there is a closed form solution for European-type option

prices. The assumptions are related to a risk-premium function, and the cur-

rent value of volatility. Henceforth, assuming a given value for the current

volatility, prices of calls and puts for different strike values, are generated by

what we refer as Heston (1993) model.

The parameters adopted are κ = 5, θ = 0.03, σ = 0.3, and ρ = −0.7. In

the simulation a zero dividend yield, a risk-free rate r = 0.02, and a time

to maturity of 3-months (τ = 0.25), are adopted. It is assumed that, at

t the price of the underlying asset is St = 50, and the range of strikes is

given by the interval [35, 62]. For prices obtained using the model, random

noise was added to mimic observed market prices. Using these perturbed

prices, we illustrate the performance of nonparametric methods developed in
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Figure 1: Heston’s model prices and RND

this paper. With Heston’s model, no analytic formula is available to express

RNDs. Nowadays, we can generate Heston’s prices for calls and puts within

a fine grid of strikes, and approximate RNDs smoothly and accurately us-

ing second derivatives calculated numerically. For parameters’ values defined

above this kind of calculations were performed and are depicted in Figure 1.

An equally-spaced of fine strike prices was considered and numerical second

derivatives were calculated, presenting a great stability. True RND can be

obtained with high-accuracy levels, which is a positive function that inte-

grates one, slightly negatively asymmetric corresponding to a negative value

assumed by the leverage effect ρ = −0.7.

This kind of data is corrupted with noise, considering the example of in-

traday data for a given strike, different option prices values can be observed.

To reproduce market data, for each strike a theoretical price is calculated,

and a series of observations are simulated adding some noise to the prices.

Following Yatchew and Härdle (2006), and assuming already a nonparametric

framework, we used the formula yi = m(xi)+0.03m(xi)εi, with εi ∼ N(0, 1),

where for each strike one thousand observations were simulated. Result-

ing prices and comparisons between true and estimated RND are depicted

19



35 40 45 50 55 60

Strikes

0

2

4

6

8

10

12

14

16

P
ric

es

Call and put prices vs mean estimates (black)

35 40 45 50 55 60

S
T

0

0.02

0.04

0.06

0.08

0.1

0.12

D
en

si
ty

RND - true (blue); estimated (red)

Figure 2: Simulated prices; mean and RND estimates

in Figure 2. We obtain a good overall fitting and the expected behaviour

for density tails. This is a very controlled environment with equally-spaced

strikes, and equal number of observations for each strike, however, prices are

highly perturbed. As it is also demonstrated in the literature associated with

RND estimation, obtaining a good fit for the mean pricing function through

noparametric estimation methods does not constitute a great challenge, in

opposition to its second derivative estimation (Aı̈t-Sahalia and Duarte, 2003;

Yatchew and Härdle, 2006; Birke and Pilz, 2008; Grith et al., 2012).

5 Empirical demonstration

In this section, we provide nonparametric density estimations using S&P500

and VIX options. Each underlying asset gives raise to a huge number of

option contracts. In fact, there are different maturities available, and also

many strikes. Considering only vanilla options, significant amount of put and

call contracts can make difficult data retrieving, treatment and application

of common data-cleaning procedures. For these tasks it is necessary to build
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data structures able to accommodate the diversity and complexity in data.

The number of contracts and maturity dates available for a given stock can

be different for calls and puts. Finally, most trades are done near-the-money,

which varies with the underlying asset price. Option contracts that are deep-

in-the-money or deep-out-the-money are rarely traded, which means that

observed prices can carry different amounts of information.

5.1 Data description

We use intraday data for options associated with two indices, S&P500 and

VIX, from CBOE. Options related to S&P500 index correspond to a SPXW

version of contracts. Data was collected from the publicly available site

YahooFinance using tailored software to record observations for every con-

tract (strikes, maturities, etc.), during regular daily negotiation time. The

sample corresponds to observations obtained from April 16 to April 20, 2018.

Despite the short period represented by one week, due to aforementioned

diversity the number of observed contracts are of orders 104 and 103. Added

to this fact, the frequency of observed data is 5 minutes, and each contract

was considered 390 times in the sample. For SPXW with time-to-maturity of

around one month, 15 964 and 21 508 observations were considered for calls

and puts, respectively, whereas, for VIX, 1 465 and 1 196 observations are

available. These numbers are comparable with ones considered in literature

that uses nonparametric methods to estimate RND functions, see e.g. Aı̈t-

Sahalia and Lo (1998), Song and Xiu (2016).

Following the literature, which can be clearly understood due to hetero-

geneity associated with options data, data-cleaning procedures are needed.

The main aim is to remove troublesome data points in terms of compatibil-

ity with theoretical results, e.g. no-arbitrage constraints, and points that are
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irrelevant as correspond to contracts that have never been traded. In our ap-

proach, data-cleaning is reduced to minimal procedures. First, we eliminate

duplicate observations that result from working with high-frequency data.

Second, option contracts with bid or open interest equal to zero are also

eliminated. This last step assumes less importance since we use open inter-

est as a weight in the estimation procedures which eliminates automatically

such observation.

In the literature, out-of-the-money and in-the-money call and put prices

are considered separately because they accommodate different information.

This is addressed by using the well-known put-call parity formula, converting

put into call prices. This conversion is not absent of difficulties, especially

because lack of synchronization, which can only be softened using end-of-day

data (Song and Xiu, 2016), but not totally resolved. We include directly in

estimation procedures call and put contract prices. By taking advantage of

this inclusion, avoiding using put-call parity conversions, new information is

added allowing better estimates to be obtained.

As the sample period considered is short, less variation of elements that

determine option prices need to be accounted for. Examples are risk-free

interest rate, dividend yield and underlying stock prices. Long sample periods

may rise concerns about structure maintenance of prices. In contrasting with

Aı̈t-Sahalia and Lo (1998) that have considered around one year of daily

data, and Song and Xiu (2016) with seventeen years, we use a short period

of intraday data that allow us to compare results with the referred ones in

terms of data dimension. As we deal with a short sample period, we only

considered contracts with a fixed short maturity date. Time-to-maturity is

fixed, and in RND estimation setting, this resembles a cross-section approach.

Aı̈t-Sahalia and Lo (1998) and Song and Xiu (2016) performed an analysis
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Figure 3: Call and put bid-ask mean prices with expiration date May 18,

2018 (τ = 1/12) on S&P 500 index, and May 16, 2018 (τ = 1/12) on VIX

index.

by rolling forward contracts, and defined results for a mean maturity period.

Due to using intraday data, we do not need such data manipulation proce-

dure. Considering options in aforementioned sample, a time-to-maturity of

around one month was considered, May 18 for S&P500, and May 16 for VIX.

Bid-ask mean prices were used to represent observed prices, and for each

strike, a series was obtained, for calls and puts. Data is depicted in Figure

3, where graphics were truncated to show most relevant parts. For S&P500,

strikes and prices were scaled by a 10−2 factor, representing a change of unity

justified by pricing functions homogeneity, and allowing a better visualization

of data.

5.2 Estimation results

Using intraday data, for each strike a series of prices is obtained. A mean

function can be approximated for each strike by simple averaging option
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prices. Considering yet a nonparametric approach, even with a local constant

estimator (Nadaraya-Watson), mean function estimates cannot be ruled out

by any economic or statistical argument. It is assumed that option pric-

ing functions are twice differentiable, and are expected to be monotone and

convex, consequently for an interior point the estimator is consistent. How-

ever, when first and second derivatives are estimated, statistical properties

degrade with a substantial decrease of convergence rates. More importantly,

estimates start to lack economic sense, and go against established theoretical

results. These facts are well-established in Aı̈t-Sahalia and Duarte (2003)

and Yatchew and Härdle (2006), which constitute main motivations for pre-

senting new methods capable of dealing with such drawbacks.

Considering the estimation applied to S&P500 data set, and as we used

one hundred units to refer S&P500 data, the less troublesome region is defined

by strikes between 24 and 28, for calls and puts. Below strike 24, for calls,

strikes grid is sparser, the same happens for puts with values above 28. Re-

gions where information for calls is lacking are compensated by information

from puts, and vice versa. For the performed estimation, time-to-maturity

was set to τ = 1/12 and, based on Treasury Bills data, a value of 2% was

considered to be the risk-free interest rate r. Our main contribution was to

devise a method able to cope with such different sets within the estimation

of a unique RND.

Results for S&P500 are depicted in Figure 4, and reveal the effectiveness

of proposed methods. Mean pricing functions are not difficult to estimate,

however, if we consider only call prices (put prices) a greater variability can

be observed for mean pricing functions. This affects RND estimation for the

left tail using just calls, and right tail for puts. We use calls and puts within

a unique criterion function, imposing no-arbitrage constraints. A smooth
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Figure 4: Estimated mean function and RND for call and put bid-ask mean

prices for contracts with expiration date of May 18, 2018 (τ = 1/12) on the

S&P500 index.

and reliable RND is estimated guaranteeing no-negative density values, an

expected behaviour for tails, and an area under the curve near one. Es-

timation procedures were also applied to VIX, with similar data problems

as found for S&P500. The same effect of information compatibility and

smoothness is reflected for RND estimation, which is depicted in Figure 5.

Performance of different estimators from Nadaraya-Watson (local constant)

though local linear, local quadratic, and local cubic is substantially different.

The improvements in results are significative. Nadaraya-Watson estimator

gives a less acceptable estimated mean function, and for the density, severe

problems at tails (Aı̈t-Sahalia and Duarte, 2003; Yatchew and Härdle, 2006).

This effect is softened by considering higher order polynomials, but meaning-

ful results can be obtained only by imposing a set of no-arbitrage constraints.

We are able to define such in a very natural manner using a unique criterion

function.

Finally, we have to highlight the difference in shape of both RND esti-

mates (Figures 4 and 5). Results are intuitive and confirm what seems to
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Figure 5: Estimated mean function and RND for call and put bid-ask mean

prices for contracts with expiration date of May 16, 2018 (τ = 1/12) on the

VIX index.

be expected considering the different nature of the underlying assets. When

subscribing S&P500 option options, the main interest is the left tail, since it

reveals a possibility of drop in prices, or eventually a default. For VIX, the

main interest is the right tail, as it is related to a possibility of an increase in

volatility. This difference is clearly reflected in the estimation performed is

this paper, and seems to reinforce the meaningfulness of proposed extension.

6 Concluding remarks

This paper has developed and tested a new nonparametric approach for esti-

mating RNDs from European option prices, using intraday data. The result-

ing problem is a quadratic programming problem, with a convex objective

function, linear constraints, upper and lower bounds on variables. This is a

challenging problem since RNDs are obtained through estimates for second

derivatives. Naive approaches do not guarantee non-negativity, integration
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to one, and RND smoothness. Although by defining a problem that includes

calls, puts, and respective weights, it is guaranteed to obtain aforementioned

features. Using simulated data we demonstrated that the method is able

to recover, with acceptable accuracy, true RNDs. We applied the method

to S&P500 and VIX options with results that are robust and easily inter-

pretable. Comparison between both RNDs reveals main motivations for sub-

scribing such securities: protection against decreases (S&P500) and increases

(VIX) on values of respective underlying assets.
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Grith, M., W. K. Härdle, and M. Schienle (2012). Nonparametric estimation

of risk-neutral densities. In Handbook of Computational Finance, pp. 277–

305. Springer.
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