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Abstract 

This paper addresses measurement error (ME) of double bounded 

variables, of which fractional variables, defined on the interval [0,1], 

constitute a prominent example. The text discusses consequences of ME 

and suggests a specification test sensitive to ME of such variables. Given 

the latter’s bounded support, ME is not independent of the original error-

free variate, a fact that invalidates classical ME assumptions as a 

framework for the test. This is circumvented with a score test of 

independence between the error-free variate and ME, under which the 

latter becomes degenerate at zero and their joint distribution, specified 

as a copula function, reduces to the original variable’s distribution. This 

procedure yields a specification test of the distribution of the error-free 

variable, valid under mild assumptions on the marginal distribution of 

ME and under departures from the specified copula. The test’s finite-

sample behaviour is also evaluated through a set of simulation 

experiments. 
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1 Introduction 

 

The present paper addresses the possibility of measurement error (ME) of double 

bounded random variables, a context in which fractional variates, inherently de-

fined on the interval [0,1], constitute a prominent well-studied example (see, e.g., 

Papke and Wooldridge, 1996; Ferrari and Cribari-Neto, 2004; Ramalho, Ramalho 

and Murteira, 2011; and the references therein). The presence of ME in this context 

raises some interesting research issues that challenge conventional estimation and 

inference approaches. The present text discusses some of these issues and suggests 

a specification test of the distribution of continuous double bounded variables, pre-

sumably sensitive to ME contamination. The proposed test can be used to assess the 

latter both in a stand-alone variable and in a regression context with double 

bounded response. 

 Let 𝑌 and 𝑉 denote, respectively, the error-free continuous variable, defined 

on the interval [𝑎, 𝑏] ⊂ ℝ, and ME. As the latter is unobservable, the error-free vari-

able 𝑌 is also unobservable if erroneously measured. Meanwhile, the fact that the 

support of 𝑌 is bounded makes it difficult to assume that 𝑌 and 𝑉 are independent 

without ad hoc restrictions on the support of 𝑌 and/or 𝑉. For instance, under addi-

tive ME, with 𝑍 ≡ 𝑌 + 𝑉 denoting the error-contaminated observable variable, de-

fined on the same support as 𝑌, 𝑉 cannot be taken as independent of 𝑌 as its con-

ditional support, given 𝑌 = 𝑦, is [𝑎 − 𝑦, 𝑏 − 𝑦]. In the terms of the established ME 

literature, 𝑉 cannot be considered “strongly classical” (see, e.g., Chen, Hong and 

Nekipelov, 2011; Schennach, 2013). Moreover, without excluding the boundaries 

from the support of 𝑌 and 𝑍 (taking the open interval ]𝑎, 𝑏[), 𝑉 cannot even be taken 

as simply mean-dependent of 𝑌 (or “weakly classical”) because E(𝑉|𝑌 = 𝑦) is nec-

essarily dependent on 𝑦, if not elsewhere, at least for 𝑦 = 𝑎 or 𝑦 = 𝑏. Note that, in 

order to allow ME at 𝑌 = 𝑎 (respectively, 𝑌 = 𝑏), one must have E(𝑉|𝑌 = 𝑎) > 0 

(respectively, E(𝑉|𝑌 = 𝑏) < 0) – otherwise 𝑉 would be degenerate at zero in either 

boundary. In short, E(𝑉|𝑌 = 𝑦) cannot be constant, irrespective of 𝑦. As a 

consequence, the higher order conditional moments of 𝑉 given 𝑌 = 𝑦 (for instance, 

the variance) are also, very likely, functionally dependent of 𝑦. 

 One may think of alternative approaches regarding the composition of error-

free and ME variates, aiming at independence thereof. Consider, for simplicity, the 
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most usual case, in which 𝑌 is fractional, that is, 𝑎 = 0, 𝑏 = 1 (if this is not the case, 

it can obviously be produced by an affine transformation of 𝑌). One possible ap-

proach considers multiplicative ME, with 𝑍 ≡ 𝑌𝑉 (a framework adopted in the case 

of duration responses by Chesher, Dumangane and Smith, 2002). This case, however, 

precludes ME at 𝑌 = 0 and, in addition, independence of 𝑌 and 𝑉 would impose 0 ≤

𝑍 ≤ 𝑌 because, necessarily, 0 ≤ 𝑉 ≤ 𝑙 for some 𝑙 ≤ 1 (otherwise 𝑍 could be greater 

than one). Yet another possibility would be 𝑍 ≡ 𝑌𝑉 , which avoids the previous diffi-

culty (allowing 𝑍 to be greater than 𝑌) but, nevertheless, excludes ME at {0,1} as 𝑍 ≡

𝑌 in either boundary. A logarithmic transform, log 𝑍 ≡ 𝑉 log 𝑌 would still preclude 

ME at 𝑌 = 1 (besides restricting the support of 𝑌 and 𝑍 to ]0,1]). 

 In view of the above considerations, additive nonclassical ME is assumed in the 

remainder of the present text. ME is termed “nonclassical” in the sense that it does 

not comply with classical assumptions regarding independence from the error-free 

variate (independence from, or mere uncorrelatedness with, 𝑌). Indeed, in this con-

text, either 𝑉 and 𝑌 are statistically dependent or, conversely, 𝑉 is degenerate at 

zero. In other words, independence of 𝑌 and ME is equivalent to no ME whatsoever. 

This observation, in turn, suggests an ‘indirect’ look at the plausibility of dependence 

between the error-free variate of interest and ME. As described below, one such ap-

proach can lead to a feasible specification test of the distribution of 𝑌, expected to 

be sensitive to the presence of ME of the double bounded variate of interest. Since 𝑉 

is unobserved, a score-type test, involving estimation of the specified model for 𝑌’s 

data generating process (DGP) under the null hypothesis of no ME, seems a natural 

choice for such procedure. 

 The starting point of the proposed analysis takes the joint distribution of 

(𝑌, 𝑉), 𝐹, using a bivariate parametric copula formulation. As is well known – see, 

e.g., Joe (2014) – copula models formalize the dependence structure of component 

variables, explicitly discerning this structure from each variable’s margin. Many 

common parametric copulas encompass independence as a special case, corre-

sponding to a particular value of their dependence parameter (or a set of values, if 

the copula involves more than one parameter). Under these values, 𝐹 collapses to 

what is usually termed “independence copula”, formally expressed as 𝐹𝑌𝐹𝑉 , with 𝐹𝑌 

and 𝐹𝑉  denoting the marginal distributions of, respectively, 𝑌 and 𝑉. Under appro-
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priate smoothness of 𝐹 as function of its dependence parameters in the neighbour-

hood of the values yielding independence, the corresponding log-density can 

provide the basis for a score statistic. As detailed below, this approach yields a valid 

test for ME under mild assumptions on the marginal distribution of ME, as well as 

under departures from the adopted copula. As previously mentioned, the suggested 

procedure can be utilized with either a stand-alone variable (in which case the test 

involves the probability integral transform, 𝐹𝑌(𝑌)) or a regression double bounded 

response with covariates 𝑿 (involving the conditional probability integral trans-

form, given 𝑿, 𝐹𝑌|𝑿(𝑌|𝑿)). 

 The remainder of the paper is organized as follows. Section 2 completes the 

notation and sets the general framework, discussing consequences of ME for the dis-

tribution of double bounded variables. Section 3 describes the proposed specifica-

tion test, detailing its variants and asymptotic distribution. Section 4 presents a 

Monte Carlo study, illustrating the empirical size and power of the proposed test 

under various designs. Section 5 concludes the paper and suggests future research. 

 

2 Framework 

 

Let 𝑌 and 𝑉 denote, respectively, as previously defined, the unobservable, error-free, 

double bounded continuous variable of interest, and unobservable continuous ME. 

Consider, for convenience, that 𝑌 is a fractional variable, 𝑦 ∈ [0,1], and assume an 

additive ME model, 𝑍 ≡ 𝑌 + 𝑉, with 𝑍 observable and defined on the same support 

as 𝑌. Denote the unknown joint continuous distribution of (𝑌, 𝑉) as 𝐹, the support 

of which can be expressed in general as {(𝑦, 𝑣) ∈ ℝ2: −𝑦 ≤ 𝑣 ≤ 1 − 𝑦, 0 ≤ 𝑦 ≤ 1}. 

 Consider now the expression of 𝐹 in terms of a parametric copula function. 

Formally, write the joint distribution of (𝑌, 𝑉) as 𝐶[𝑢𝑌, 𝑢𝑉(𝜹); 𝜹] = 𝐹(𝑦, 𝑣; 𝜹) =

Pr(𝑌 ≤ 𝑦, 𝑉 ≤ 𝑣; 𝜹), where 𝐶 denotes some continuous bivariate copula, 𝑢𝑌 ≡

𝐹𝑌(𝑦) = Pr(𝑌 ≤ 𝑦) and 𝑢𝑉(𝜹) ≡ 𝐹𝑉(𝑣; 𝜹) = Pr(𝑉 ≤ 𝑣; 𝜹). The copula involves one 

or more dependence parameters, denoted in general by the column 𝑑-vector 𝜹 (in 

addition to those parameters involved solely in the marginal distributions of 𝑌 and 

𝑉, not made explicit). It is important to note at the outset that, in the present double 

bounded case, the marginal distribution of ME is in some way affected by 𝜹 (contra-
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rily to 𝑌’s marginal distribution, which does not involve 𝜹) – at the very least, 𝑉 be-

comes degenerate at zero for 𝜹 = 𝟎. Hence the explicit notation 𝑢𝑉(𝜹). In what 

follows, incidentally, one may simply use 𝑢𝑉  instead of 𝑢𝑉(𝜹). 

 Assume without loss of generality that independence of 𝑌 and 𝑉 is attained for 

𝜹 = 𝟎 (under which value, as mentioned, the variable 𝑉 becomes degenerate at 

zero). Consider in detail each case. 

𝑖. For 𝜹 ≠ 𝟎 𝑌 is affected by ME, with 𝑌 and 𝑉 continuous dependent random 

variables. In this case, the joint density of (𝑌, 𝑉) can be produced by differentiating 

their joint distribution: in general, for −𝑦 ≤ 𝑣 ≤ 1 − 𝑦, 0 ≤ 𝑦 ≤ 1, 

𝑓(𝑦, 𝑣; 𝜹) ≡
𝜕2𝐹(𝑦, 𝑣; 𝜹)

𝜕𝑦𝜕𝑣
=

𝜕2𝐶(𝑢𝑌, 𝑢𝑉; 𝜹)

𝜕𝑢𝑌𝜕𝑢𝑉

𝑑𝑢𝑌

𝑑𝑦

𝑑𝑢𝑉

𝑑𝑣
≡ 

𝑐(𝑢𝑌, 𝑢𝑉; 𝜹)𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹),                                                  (1) 

𝜹 ≠ 𝟎, 

where 𝑐(𝑢𝑌, 𝑢𝑉; 𝜹) ≡ 𝜕2𝐶(𝑢𝑌, 𝑢𝑉; 𝜹) 𝜕𝑢𝑌𝜕𝑢𝑉⁄  and 𝑓𝑌 and 𝑓𝑉  denote, respectively, the 

marginal densities of 𝑌 and 𝑉. The density of 𝑌 may be taken as conditional on a 

vector of observed covariates, 𝑿, but this dependence is not made explicit at present. 

𝑖𝑖. For 𝜹 = 𝟎, 𝑌 and 𝑉 are independent and 𝑉 is degenerate at zero (no ME) – with 

𝑌 continuous, unaffected by the value of 𝜹. Thus, 

𝑢𝑉(𝟎) = 𝐹𝑉(𝑣; 𝟎) = Pr(𝑉 ≤ 𝑣; 𝟎) = {
0, 𝑣 < 0
1, 𝑣 ≥ 0

 ,                            (2) 

hence, for 0 ≤ 𝑦 ≤ 1, 

𝐹(𝑦, 𝑣; 𝟎) = Pr(𝑌 ≤ 𝑦) Pr(𝑉 ≤ 𝑣; 𝟎) = {
0, 𝑣 < 0
𝐹𝑌(𝑦), 𝑣 ≥ 0

 . 

Given that 𝑓𝑌(𝑦) = 𝑑𝐹𝑌(𝑦) 𝑑𝑦⁄  and 

𝑓𝑉(𝑣; 𝟎) = Pr(𝑉 = 𝑣; 𝟎) = {
0, 𝑣 ≠ 0
1, 𝑣 = 0

 , 

the joint density, for 0 ≤ 𝑦 ≤ 1, can be written as 

𝑓(𝑦, 𝑣; 𝟎) = {
0, 𝑣 ≠ 0
𝑓𝑌(𝑦), 𝑣 = 0

 .                                              (3) 

 The next step considers the approximation to the joint density 𝑓(𝑦, 𝑣; 𝜹) 

through its Taylor-expansion in the neighbourhood of 𝜹 = 𝟎. Formally, 

𝑓(𝑦, 𝑣; 𝜹) = 𝑓(𝑦, 𝑣; 𝟎) + (
𝜕𝑓

𝜕𝜹′
)
𝜹=𝟎

𝜹 + 𝑜(𝜹) ≈ 𝑓𝑌(𝑦) + (
𝜕𝑓

𝜕𝜹′
)
𝜹=𝟎

𝜹,           (4) 

where 𝐴𝐵 stands for evaluation of 𝐴 under condition 𝐵, 𝑜(𝜹) denotes the remainder 

of the expansion, vanishing as 𝜹 → 𝟎 (for which it is sufficient that 𝑓 have continuous 
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partial derivatives with respect to 𝜹 up to order two in a neighbourhood of 𝜹 = 𝟎) 

and the last expression results from (3). The second term in this expression, involv-

ing the gradient of 𝑓 with respect to 𝜹 evaluated at 𝜹 = 𝟎 – (𝜕𝑓 𝜕𝜹′⁄ )𝜹=𝟎 – requires 

some care as 𝑓 is defined by different expressions under 𝜹 ≠ 𝟎 and 𝜹 = 𝟎. Let 𝜹(𝒋) 

denote a column 𝑑-vector with all elements zero except the 𝑗-th (denoted as 𝛿𝑗 , for 

1 ≤ 𝑗 ≤ 𝑑). From (3) the 𝑗-th component of (𝜕𝑓 𝜕𝜹⁄ )𝜹=𝟎 can be written as 

(
𝜕𝑓

𝜕𝛿𝑗
)

𝜹=𝟎

= lim𝛿𝑗→0

𝑓(𝑦, 𝑣; 𝜹(𝒋)) − 𝑓(𝑦, 𝑣; 𝟎)

𝛿𝑗
= lim𝛿𝑗→0

𝑓(𝑦, 𝑣; 𝜹(𝒋)) − 𝑓𝑌(𝑦)

𝛿𝑗
 . 

 Applying L’Hôpital’s rule, using (1) the limit can be written 

lim𝛿𝑗→0

𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹(𝒋)) − 𝑓𝑌(𝑦)

𝛿𝑗
= 

𝑓𝑌(𝑦) lim𝛿𝑗→0

𝜕{𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]𝑓𝑉(𝑣; 𝜹(𝒋))}

𝜕𝛿𝑗
 ,                             (5) 

valid on assumption that 𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]𝑓𝑉(𝑣; 𝜹(𝒋)) be differentiable with re-

spect to 𝛿𝑗  on an open interval containing zero, except possibly at zero. The deriva-

tive can be written as 

𝜕{𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]𝑓𝑉(𝑣; 𝜹(𝒋))}

𝜕𝛿𝑗
= 

[
𝜕𝑐

𝜕𝑢𝑉(𝜹(𝒋))

𝜕𝑢𝑉(𝜹(𝒋))

𝜕𝛿𝑗
+

𝜕𝑐

𝜕𝛿𝑗
] 𝑓𝑉(𝑣; 𝜹(𝒋)) + 𝑐

𝜕𝑓𝑉(𝑣; 𝜹(𝒋))

𝜕𝛿𝑗
 , 

where 𝑐 ≡ 𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]. 

 At this point it is necessary to specify in some way the manner in which the 

marginal distribution of ME is affected by the dependence parameter. Assume that 

the marginal distribution of ME, 𝑢𝑉(𝜹), is a differentiable function of its variance, 𝜎𝑉
2, 

that the dependence parameter, 𝜹, only affects 𝑢𝑉(𝜹) through the variance, 𝜎𝑉
2 ≡

𝜎𝑉
2(𝜹), and that this variance is a smooth continuous function of 𝜹, such that 

{

𝜎𝑉
2(𝟎) = lim𝜹→𝟎𝜎𝑉

2(𝜹) = 0

lim𝜹→𝟎

𝜕𝜎𝑉
2(𝜹)

𝜕𝛿𝑗
= 0, ∀𝑗

 .                                               (6) 

The first part of assumption (6) formalizes the intuition that 𝑉 is degenerate under 

𝜹 = 𝟎; given that 𝑍 ≡ 𝑌 + 𝑉 is supported on [0,1] for all 𝜹, this degeneracy of 𝑉 with 

𝜹 = 𝟎 necessarily occurs at zero. Thus one can write 
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𝜕{𝑐[𝑢𝑌, 𝑢𝑉(𝜹(𝒋)); 𝜹(𝒋)]𝑓𝑉(𝑣; 𝜹(𝒋))}

𝜕𝛿𝑗
= 

{[
𝜕𝑐

𝜕𝑢𝑉(𝜹(𝒋))

𝜕𝑢𝑉(𝜹(𝒋))

𝜕𝜎𝑉
2(𝜹)

𝜕𝜎𝑉
2(𝜹)

𝜕𝛿𝑗
+

𝜕𝑐

𝜕𝛿𝑗
] 𝑓𝑉(𝑣; 𝜹(𝒋)) + 𝑐

𝜕𝑓𝑉(𝑣; 𝜹(𝒋))

𝜕𝜎𝑉
2(𝜹)

𝜕𝜎𝑉
2(𝜹)

𝜕𝛿𝑗
} , 

from which 

lim𝛿𝑗→0

𝜕𝑐

𝜕𝛿𝑗
𝑓𝑉(𝑣; 𝜹(𝒋)) = (

𝜕𝑐

𝜕𝛿𝑗
)

𝜹=𝟎

𝑓𝑉(𝑣; 𝟎) = (
𝜕𝑐

𝜕𝛿𝑗
)

𝜹=𝟎

,                     (7) 

in view of (3). Introducing this result in (5), one can finally write the first-order ap-

proximation to the joint density of (𝑌, 𝑉), from (4), as 

𝑓(𝑦, 𝑣; 𝜹) ≈ 𝑓𝑌(𝑦)[1 + 𝑫[𝐹𝑌(𝑦)]′𝜹] ,    − 𝑦 ≤ 𝑣 ≤ 1 − 𝑦,   0 ≤ 𝑦 ≤ 1,          (8) 

with 𝑫[𝐹𝑌(𝑦)] denoting the column 𝑑-vector 

𝑫[𝐹𝑌(𝑦)] ≡ (
𝜕𝑐

𝜕𝜹
)
𝜹=𝟎

,                                                      (9) 

where 𝜕𝑐 𝜕𝜹⁄  now represents the vector of ‘direct’ derivatives of 𝑐[𝑢𝑌 , 𝑢𝑉(𝜹); 𝜹] with 

respect to 𝜹 (that is, without consideration of the dependence of 𝑢𝑉(𝜹) on 𝜹) and the 

expression of 𝑢𝑉(𝟎) involved in (𝜕𝑐 𝜕𝜹⁄ )𝜹=𝟎 is given by (2). If the copula function 

involves one single-parameter (𝛿 scalar, 𝑑 = 1), (8) can be written as 

𝑓(𝑦, 𝑣; 𝛿) ≈ 𝑓𝑌(𝑦)[1 + 𝛿𝐷[𝐹𝑌(𝑦)]] ,    − 𝑦 ≤ 𝑣 ≤ 1 − 𝑦,   0 ≤ 𝑦 ≤ 1.         (10) 

 Some remarks with respect to the approximation to 𝑓(𝑦, 𝑣; 𝜹) seem useful at 

this point. Firstly, (8) does not explicitly involve the functional form of the 

distribution of ME – although it obviously depends upon the adopted assumptions 

on 𝑢𝑉(𝜹), namely (6). Nonetheless, it does involve the distribution of the error-free 

variate – through its density, 𝑓𝑌, and distribution, 𝑈𝑌. Secondly, for the 

approximation to provide a useful model for statistical analysis of error-

contaminated data, one must ensure that (8) constitutes a proper density, 

integrating to one and nonnegative over the support of (𝑌, 𝑉). 

 The first of the above requirements – integration to unity – can be checked to 

hold, as follows. Consider again (7) and rewrite (8) as 

𝑓(𝑦, 𝑣; 𝜹) ≈ 𝑓𝑌(𝑦) + [(
𝜕𝑐

𝜕𝜹′
) 𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹)]

𝜹=𝟎
𝜹 , 

which, under assumption (6), can be written as 

𝑓𝑌(𝑦) + (
𝜕

𝜕𝜹′
{𝑐[𝑢𝑌, 𝑢𝑉(𝜹); 𝜹]𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹)})

𝜹=𝟎
𝜹 . 
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Now, taking the integral over the support of (𝑌, 𝑉), assuming that the order of inte-

gration and differentiation can be interchanged, and in view of (1), 

∫ ∫ {𝑓𝑌(𝑦) + [(
𝜕

𝜕𝜹′
{𝑐[𝑢𝑌, 𝑢𝑉(𝜹); 𝜹]𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹)})

𝜹=𝟎
] 𝜹} 𝑑𝑣𝑑𝑦

1−𝑦

−𝑦

1

0

= 

∫ ∫ 𝑓𝑌(𝑦)𝑑𝑣𝑑𝑦
1−𝑦

−𝑦

1

0

+
𝜕

𝜕𝜹′
{∫ ∫ 𝑐[𝑢𝑌, 𝑢𝑉(𝜹); 𝜹]𝑓𝑌(𝑦)𝑓𝑉(𝑣; 𝜹)𝑑𝑣𝑑𝑦

1−𝑦

−𝑦

1

0

}
𝜹=𝟎

𝜹 = 

1 +
𝜕

𝜕𝜹′
[∫ ∫ 𝑓(𝑦, 𝑣; 𝜹)𝑑𝑣𝑑𝑦

1−𝑦

−𝑦

1

0

]
𝜹=𝟎

𝜹 = 1 +
𝜕

𝜕𝜹′
(1)𝜹 = 1 + 𝟎′𝜹 = 1 

(𝟎′ denotes a row 𝑑-vector of zeros). 

 The second requirement – nonnegativity of (8) over the support of (𝑌, 𝑉) or, 

equivalently, (𝜕𝑐 𝜕𝜹′⁄ )𝜹=𝟎𝜹 ≥ −1 in a neighbourhood of 𝜹 = 𝟎 – is satisfied by any 

continuously differentiable copula function in a small enough neighbourhood of 𝜹 =

𝟎 (the case with the examples considered in Section 4). 

 The first-order expansion (8) thus yields a proper density which provides an 

approximation to 𝑓(𝑦, 𝑣; 𝜹) involving the distribution of the error-free variate and 

the derivative of the copula with respect to its dependence parameter. Given the 

definition 𝑍 ≡ 𝑌 + 𝑉, a standard change-of-variables technique yields the joint den-

sity of (𝑍, 𝑉), 𝑓𝑍𝑉(𝑧, 𝑣; 𝜹) = 𝑓(𝑧 − 𝑣, 𝑣; 𝜹) with bivariate support 𝑧 − 1 ≤ 𝑣 ≤ 𝑧, 0 ≤

𝑧 ≤ 1. Taking (8), an approximation to 𝑓𝑍𝑉  can be expressed as 

𝑓𝑍𝑉(𝑧, 𝑣; 𝜹) ≈ 𝑓𝑌(𝑧){1 + 𝑫[𝐹𝑌(𝑧)]′𝜹},    𝑧 − 1 ≤ 𝑣 ≤ 𝑧,    0 ≤ 𝑧 ≤ 1, 

where 𝑫[𝐹𝑌(𝑧)] is similar to 𝑫[𝐹𝑌(𝑦)] – check (9) – but with 𝑢𝑌 now denoting the 

evaluation of 𝐹𝑌 at 𝑧 that is, 𝐹𝑌(𝑧). From this approximation to 𝑓𝑍𝑉  an approximate 

margin of 𝑍 immediately results as 

𝑓𝑍(𝑧; 𝜹) = ∫ 𝑓𝑍𝑉(𝑧, 𝑣; 𝜹)𝑑𝑣
𝑧

𝑧−1

≈ 𝑓𝑌(𝑧){1 + 𝑫[𝐹𝑌(𝑧)]′𝜹}∫ 𝑑𝑣
𝑧

𝑧−1

= 

𝑓𝑌(𝑧){1 + 𝑫[𝐹𝑌(𝑧)]′𝜹},    0 ≤ 𝑧 ≤ 1.                                     (11) 

With no ME of 𝑌 (𝜹 = 𝟎) this expression coincides with 𝑓𝑌(𝑦) – quite expectably, as 

𝑍 ≡ 𝑌. With covariates 𝑿 present, the conditional distribution and density of 𝑌 given 

𝑿 = 𝒙 should be used in the expression of the approximate 𝑓𝑍|𝑿. 

 By specifying 𝐹𝑌 (or 𝐹𝑌|𝑿) and 𝐶, the previous result may be useful if one wishes 

to estimate parameters while making allowance for the impact of ME. For instance, 

using a one-parameter copula, if under 𝐹𝑌|𝑿 one has E(𝑌|𝒙) = 𝐺(𝒙𝜷) – e.g., logit – 

but ME is suspected to affect the response data, one may want to estimate 𝜷 by using 
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the approximate model E(𝑍|𝒙) = 𝐺(𝒙𝜷) + 𝛿E{𝑌𝐷[𝐹𝑌|𝑿(𝑌|𝒙)]|𝒙}. Estimating the pa-

rameters of this model, the significance of 𝛿 can then be tested, in which case ac-

ceptance of the null indicates no evidence of ME in the response. Typically, the 

practical difficulty here concerns the estimation of E{𝑌 × 𝐷[𝐹𝑌|𝑿(𝑌|𝒙)]|𝒙}, possibly 

requiring some approximation technique. 

 A general consequence of the foregoing discussion is that the presence of ME 

of a double bounded variable (as a stand-alone variate or as a regression response) 

induces distributional changes that lead to inconsistency of the usual estimators of 

relevant features of the misspecified distribution (including, e.g., parameters of the 

response’s conditional mean given regressors). One such example, frequently ap-

plied to models for fractional data, is provided by the Bernoulli-based quasi-maxi-

mum likelihood (QML) estimator, which, as is well known, only requires correct 

specification of E(𝑌|𝒙) – see, e.g., Papke, et al. (1996). In the present context, how-

ever, not even E(𝑌|𝒙) is immune to ME – contrarily, for instance, to the effect of 

classical additive ME in unbounded responses of linear models (where 

mismeasurement does not lead to inconsistency but only to less statistical precision 

in estimation – see, e.g., Hausman, 2001). Consequently, also QML – like nonlinear 

least squares or maximum likelihood (ML) based on 𝑓𝑌|𝑿 alone – will generally prove 

inconsistent in this case. 

  The previous arguments suggest that it is prudent to subject the adopted 

specification of the bounded variate of interest, 𝑓𝑌 or 𝑓𝑌|𝑿, to a specification test sen-

sitive to the presence of ME. As already mentioned, one might think of estimating 

(11) and testing the null hypothesis 𝐻0: 𝜹 = 𝟎. However, such procedure would re-

quire specification of the unknown copula, 𝐶 (naturally based, if anything, on ana-

lytical and/or computational convenience), so a score test of the null hypothesis of 

no ME, avoiding estimation of the alternative model, appears as a natural choice. 

This procedure is described in the next section. Actually, as verified below, the 

proposed score test leads to a valid procedure, irrespective of the form of the 

unknown copula function. 
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3 A Score Specification Test 

 

Employing expression (11) as the basis for a likelihood function of the parameters 

of 𝑓𝑍, the score contribution for 𝜹 under the null hypothesis 𝐻0: 𝜹 = 𝟎 is simply 

𝑫[𝐹𝑌(𝑧)] (again, the distribution of 𝑌 can be conditional on covariates). Suppose that 

𝐹𝑌 involves the 𝑘-vector of parameters 𝜽 and denote this as 𝐹𝑌(∙; 𝜽). Assume further 

that a random sample of 𝑛 realisations on the observable fractional variate 𝑍 is avail-

able, and let �̂�𝒏 ≡ 𝑛−1 2⁄ ∑ 𝑫[𝐹𝑌(𝑧𝑖; �̂�)]𝑛
𝑖=1  (here and elsewhere (∙)̂ denotes evalua-

tion at ML estimates of the unknown parameters of 𝐹𝑌 – that is, ML estimates under 

the null hypothesis of no ME). Then, the score test statistic for 𝐻0: 𝜹 = 𝟎 is 

𝑀𝑛 = �̂�𝒏
′ �̂�𝒏

−𝟏�̂�𝒏,                                                        (12) 

with �̂�𝒏 an estimate of 𝚺, the asymptotic 𝑑 × 𝑑 covariance matrix of �̂�𝒏 under 𝜹 = 𝟎. 

Assuming that the copula and the distribution of the continuous variable 𝑌 are cor-

rectly specified, under 𝐻0 and usual regularity conditions, 𝑀𝑛 is asymptotically 

distributed as a chi-squared random variate with 𝑑 degrees of freedom (𝜒𝑑
2). 

 A closer look at the asymptotic behaviour of �̂�𝒏 under the null and alternative 

hypotheses seems useful at this point. Under the null hypothesis (𝜹 = 𝟎 – no ME, 

𝑍 ≡ 𝑌) a random sample of realisations of 𝑌 is available so, by a Law of Large Num-

bers, plim𝑛→∞𝑛−1 2⁄ �̂�𝒏 = E{𝑫[𝐹𝑌(𝑌)]}. Let 𝐶 denote the adopted copula (which may, 

or may not, coincide with the DGP copula) with dependence parameter 𝜹. Then, as-

suming that the order of differentiation and integration can be reversed, 

E{𝑫[𝐹𝑌(𝑌)]} = E [(
𝜕𝑐

𝜕𝜹
)
𝜹=𝟎

] = [
𝜕

𝜕𝜹
E(𝑐)]

𝜹=𝟎
= [

𝜕

𝜕𝜹
(1)]

𝜹=𝟎
= 𝟎,           (13) 

where the third equality results from the fact that 𝐶 is itself a proper joint 

distribution (regardless of whether it is correctly specified or not) so its associated 

density, 𝑐, has expectation one. 

 One consequence of the previous result, relevant from a practical perspective, 

is the fact that, in general, any proper bivariate continuous copula (encompassing 

independence) can be employed to carry out the test – as plim𝑛→∞𝑛−1 2⁄ �̂�𝒏 = 0 un-

der the null, irrespective of the DGP copula (in case of ME contamination). For 

instance, namely for the sake of simplicity, one can make use of one of the several 

single-parameter (𝑑 = 1) bivariate copulas available in the literature (several 

examples of which are used in a Monte Carlo study, in Section 4). 
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 If the variable of interest is affected by ME, result (13) is not attained, in gen-

eral. Note that in this case the available sample comes from 𝑍 ≡ 𝑌 + 𝑉, which is not 

distributed according to 𝐹𝑌. Consequently, the random variable 𝑊 ≡ 𝐹𝑌(𝑍) is not a 

probability integral transform, not distributed according to a standard uniform law, 

𝒰(0,1), but with density 

𝑓𝑊(𝑤; 𝜹) =
𝑓𝑍[𝐹𝑌

−1(𝑤); 𝜹]

𝑓𝑌[𝐹𝑌
−1(𝑤)]

=
𝑓𝑍(𝑧; 𝜹)

𝑓𝑌(𝑧)
≈ 1 + 𝑫[𝐹𝑌(𝑧)]′𝜹,        0 ≤ 𝑤 ≤ 1,    (14) 

where the approximation results from replacing 𝑓𝑍(𝑧; 𝜹) with expression (11) (as 

expected, 𝜹 = 𝟎 yields a uniform density). Therefore, 𝐶, as a function of 𝐹𝑌(𝑧) and 

𝑢𝑉(𝜹), is no longer a proper copula (because it does not have 𝒰(0,1) marginals) or, 

equivalently, 𝑐[𝐹𝑌(𝑧), 𝑢𝑉(𝜹); 𝜹] is not a proper bivariate density. Therefore, with ME, 

E{𝑫[𝐹𝑌(𝑍)]} ≠ 𝟎 and �̂�𝒏 is 𝑂𝑝(√𝑛) so the test is consistent. 

 The proposed specification test can be viewed as a test of the 𝑑 moment con-

ditions E{𝑫[𝐹𝑌(𝑍)]} = 𝟎 (or E{𝑫[𝐹𝑌|𝑿(𝑍|𝑿)]|𝑿} = 𝟎, with covariates 𝑿). In 

accordance with Newey (1985) (see also Pagan and Vella, 1989), the expression of 

the asymptotic covariance matrix of �̂�𝒏 under the null hypothesis is generally given 

by �̂�𝒏 = 𝑯𝑱𝑯′, with 

𝑱

(𝑑+𝑘)×(𝑑+𝑘)

≡ 𝑛−1 ∑

[
 
 
 
 

 

𝑫[𝐹𝑌(𝑧𝑖; �̂�)]𝑫[𝐹𝑌(𝑧𝑖; �̂�)]
′

𝑑×𝑑

𝑫[𝐹𝑌(𝑧𝑖; �̂�)]�̂�𝒊
′

𝑑×𝑘

�̂�𝒊𝑫[𝐹𝑌(𝑧𝑖; �̂�)]
′

𝑘×𝑑

�̂�𝒊�̂�𝒊
′

𝑘×𝑘

 

]
 
 
 
 

𝑖

 

𝑯

𝑑×(𝑑+𝑘)

≡ [ 𝑰𝒅

𝑑×𝑑

⋮ −{𝑛−1 ∑
𝜕𝑫[𝐹𝑌(𝑧𝑖; �̂�)]

𝜕𝜽′

𝑑×𝑘
𝑖

}(𝑛−1 ∑
𝜕�̂�𝒊

𝜕𝜽′

𝑘×𝑘
𝑖

)

−1

 ] , 

where 𝑰𝒅 denotes the identity matrix of order 𝑑, summations are over 𝑖 = 1,… , 𝑛 

and �̂�𝒊 ≡ 𝜕 log 𝑓𝑌(𝑧𝑖; �̂�) 𝜕𝜽⁄  denotes the 𝑖-th contribution to the score vector under 

𝐻0. If the adopted copula only involves one dependence parameter (𝛿 scalar – 𝑑 =

1), 𝑯 is a row (𝑘 + 1)-vector and �̂�𝒏 is a scalar. 

 An “outer product of the gradient” (OPG) variant of the test, asymptotically 

equivalent to it, is rather easier to compute as it does not require the construction 

of the previous matrices. This version of the test is computed as 𝑛 times the uncen-

tered 𝑅2 from the auxiliary regression 

1 = 𝑫[𝐹𝑌(𝑧𝑖; �̂�)]
′
𝜻 + �̂�𝒊

′𝜼 + error,                                        (15) 
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with 𝜻 and 𝜼 denoting parameter vectors. 

 Although much easier to implement, the OPG version of the test is well-known 

for its poor small sample performance in some leading cases. In the next section, a 

brief Monte Carlo experiment presents simulation results that illustrate the small 

sample performance of both versions of the test just described. 

 

4 Monte Carlo Experiment 

 

4.1 General Design 

 

This section presents a Monte Carlo experiment designed to illustrate the finite sam-

ple performance of the test described in the paper. Although the test can obviously 

be applied to any continuous double bounded variable, only the fractional case is 

considered in the experiment, as this is, by far, the most frequent. The study is orga-

nized in two main parts: the first considers ME of a stand-alone fractional variable 

whereas, in the second part, ME is supposed to affect a fractional response in a re-

gression model. In both parts the two versions of the proposed test are implemented 

with several single-parameter (𝑑 = 1) copulas, yielding particular expressions for 

𝐷(∙) and corresponding test statistics. The two versions of the test examined in the 

experiment are obtained from (12) and (15), named respectively as M1 and M2. Un-

der the various DGP’s considered, rejection rates of 𝐻0 are computed at the 5% nom-

inal size (with respect to the 𝜒1
2 asymptotic null law), based on 10000 random 

samples of size 𝑛 = 500.(1) All computations were performed using the 𝑅 software. 

 In all the alternative DGP’s considered, the error-free variate, 𝑌, is a continuous 

fractional variable distributed according to a Beta DGP (with different parameter 

values, or different conditional means in the regression case). Under ME (denoted 

𝑉), the latter is randomly drawn from one of the following continuous conditional 

distributions, given 𝑌 = 𝑦: 𝑉 + 𝑦|𝑦 ~ 𝐵𝑒𝑡𝑎(1 (1 − 𝑦)⁄ , 2) (yielding a conditional 

mode of the observable fractional variable, 𝑍, equal to 𝑦); 𝑉|𝑦 truncated Normal with 

                                                           
(1) Samples of size 250 and 1000 produce expectable results, in line with those reported in the 
paper, and are therefore omitted. Rejection rates obtained at 1% and 10% nominal levels are also 
not reported, as they meet overall expectations, given reported rates at the 5% nominal level. 
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parameters (0,1) and support [−𝑦 2⁄ , (1 − 𝑦) 2⁄ ] – 𝒩𝒯(0,1); 𝑉|𝑦 Uniform with sup-

port [−𝑦 2⁄ , (1 − 𝑦) 2⁄ ] – 𝒰(−𝑦 2⁄ , (1 − 𝑦) 2⁄ ). 

 All the copula functions selected to carry out the test are one-parameter copu-

las (𝛿 scalar – 𝑑 = 1). At this point, one should note that, in view of the test’s robust-

ness to the adopted copula – check (13) – in this selection there was little concern 

that the copulas would correspond to the above described DGP’s for the variate of 

interest and ME. Rather, and more specifically, the selection was made according to 

the following criteria: inclusion of the independence copula as a special case for a 

unique value of the dependence parameter, 𝛿; continuity and differentiability with 

respect to 𝛿 in a neighbourhood of the value yielding independence; analytical con-

venience, in view of their purported use and the fact that any proper continuous 

copula can be employed to implement the test – check (13). The copulas’ formulae 

and corresponding expressions for 𝐷(∙) (defined in (9)) as well as the value of 𝛿 

yielding independence (denoted 𝛿𝑖) are detailed next (see, e.g., Joe, 2014, Ch. 4, for 

these and other examples). In all expressions, as previously defined, 𝑢𝑌 ≡ 𝐹𝑌(𝑦) and 

𝑢𝑉 ≡ 𝐹𝑉(𝑣; 𝛿). 

 Ali-Mikhail-Haq (AMH) 

𝐶(𝑢𝑌, 𝑢𝑉; 𝛿) =
𝑢𝑌𝑢𝑉

1 − 𝛿(1 − 𝑢𝑌)(1 − 𝑢𝑉)
,   |𝛿| < 1,   𝛿𝑖 = 0;    𝐷(𝑢𝑌) = 2𝑢𝑌 − 1. 

 Farlie-Gumbel-Morgenstern (FGM) 

𝐶(𝑢𝑌, 𝑢𝑉; 𝛿) = 𝑢𝑌𝑢𝑉 + 𝛿𝑢𝑌𝑢𝑉(1 − 𝑢𝑌)(1 − 𝑢𝑉),   |𝛿| < 1,   𝛿𝑖 = 0; 

𝐷(𝑢𝑌) = 2𝑢𝑌 − 1. 

 Frank 

𝐶(𝑢𝑌, 𝑢𝑉; 𝛿) = −
1

𝛿
log {1 −

[1 − exp(−𝛿𝑢𝑌)][1 − exp(−𝛿𝑢𝑉)]

1 − exp(−𝛿)
} ,   𝛿 ∈ ℝ,   𝛿𝑖 = 0; 

𝐷(𝑢𝑌) = 𝑢𝑌 − 1 2⁄ . 

 Mardia-Takahasi-Clayton-Cook-Johnson (MTCCJ) 

𝐶(𝑢𝑌, 𝑢𝑉; 𝛿) = (𝑢𝑌
−𝛿 + 𝑢𝑉

−𝛿 − 1)
−1 𝛿⁄

,   𝛿 ≥ 0,   𝛿𝑖 = 0;    𝐷(𝑢𝑌) = log 𝑢𝑌 + 1. 

 Plackett 

𝐶(𝑢𝑌, 𝑢𝑉; 𝛿) =
1

𝜂
{1 + 𝜂(𝑢𝑌 + 𝑢𝑉) − √[1 + 𝜂(𝑢𝑌 + 𝑢𝑉)]2 − 4𝛿𝜂𝑢𝑌𝑢𝑉}, 

𝜂 ≡ 𝛿 − 1,   𝛿 ≥ 0,   𝛿𝑖 = 1;    𝐷(𝑢𝑌) = (2𝑢𝑌 − 1)3. 
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 The expressions of 𝐷(𝑢𝑌) provide the basis for the test statistic 𝑀𝑛, defined in 

(12).(2) Recalling that the probability integral transform of 𝑌, 𝑈𝑌 ≡ 𝐹𝑌(𝑌), is distrib-

uted as 𝒰(0,1), one can easily check that all the above expressions for E[𝐷(𝑈𝑌)] have 

zero expectation – as predicted by (13). The first three functions (AMH, FGM and 

Frank copulas) lead to the same test statistic, hence, in short, the present Monte 

Carlo exercise illustrates the performance of three alternative copula-based specifi-

cation tests of 𝐹𝑌. 

 

4.2 Measurement Error in a Fractional Variable (no Covariates) 

 

This section reports results illustrating the empirical performance of the proposed 

test when ME affects a fractional variable (no covariates present). In this part of the 

experiment, 𝑌 ~ 𝐵𝑒𝑡𝑎(𝛼; 𝛽) with each of the following values of (𝛼; 𝛽): Case 𝐴 −

(3; 3); 𝐵 − (1; 5); 𝐶 − (6; 2). The conditional distributions used for the fractional 

variable affected by ME, 𝑍, are as described in the general design. 

 Table 1.1 illustrates the empirical size of the tests at the 5% nominal size, for 

cases 𝐴 through 𝐶. The tests based on the MTCCJ copula (𝐷(𝑢𝑌) = log 𝑢𝑌 + 1) be-

have clearly worse than the other two tests, over-rejecting 𝐻0 in all the cases con-

sidered. For this reason, the ensuing power estimations do not include MTCCJ 

copula-based tests. With regard to the other two tests, the M1 test, not surprisingly, 

outperforms the M2 test in most of the cases. Indeed, with few exceptions, the M2 

test displays empirical rejection rates of 𝐻0 that disallow a straightforward use of 

critical values from the asymptotic 𝜒1
2 null law. For this reason, only the power esti-

mates for M1 tests are presented. 

 Table 1.2 displays power estimates for the M1 tests under the adopted DGP’s 

(not including the test based upon the MTCCJ copula). The power results vary con-

siderably across the different DGP’s considered in the experiment. One clear hint, 

though, is that the test based upon the Plackett copula (under which 𝐷(𝑢𝑌) =

(2𝑢𝑌 − 1)3) seems quite less able than the first test in the table to discern ME in the 

data. This is particularly the case with a conditional Beta ME distribution, under 

                                                           
(2) The construction of the matrix 𝐻, in the estimator Σ̂𝑛 of the variance of �̂�𝑛, involves evaluation 
of derivatives of the incomplete beta function at each sample point, 𝑧𝑖 . For brevity’s sake, the analytic 
expressions for these derivatives are omitted. 
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which the amount of ME can be relatively small when compared with the truncated 

Normal and Uniform error densities. Thus, namely when small amounts of ME are 

suspected in the data, the test with 𝐷(𝑢𝑌) = 𝑢𝑌 − 1 2⁄  may prove a sound choice. 

 

 

Table 1.1 

Estimated Sizes (%) of M1 and M2 Tests (5% Nominal Size) 

 𝐴 𝐵 𝐶 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄  

M1 .052 .054 .054 

M2 .058 a .059 a .058 a 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 

M1 .048 .047 .051 

M2 .050 .049 .055 a 

𝐷 = log𝐹𝑌(𝑍) + 1 

M1 .061 a .065 a .059 a 

M2 .064 a .070 a .062 a 
  

a : 5% rejection rate outside 95% confidence interval. 

 

 

Table 1.2 

Estimated Powers (%) of M1 Test (5% Nominal Size) 

 𝐴 𝐵 𝐶 

𝑉 + 𝑦⌋𝑦 ~ 𝐵𝑒𝑡𝑎(1 (1 − 𝑦)⁄ , 2) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .300 .067 .813 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .051 .047 .068 

𝑉⌋𝑦 ~ 𝒩𝒯(0,1) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .052 .985 .837 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .048 .558 .316 

𝑉⌋𝑦 ~ 𝒰(−𝑦 2⁄ , (1 − 𝑦) 2⁄ ) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .047 .995 .868 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .047 .612 .403 
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4.3 Measurement Error in a Fractional Response 

 

This section reports results on the empirical size and power of the proposed test 

when ME affects a regression’s fractional response. The latter is supposed to follow 

a conditional Beta distribution with parameters involving a single standard normal 

regressor, 𝑋 ~ 𝒩(0,1) (newly drawn in each replica). The conditional Beta distribu-

tion is parameterized as 𝐵𝑒𝑡𝑎(1, 1 𝜃⁄ ), with 𝜃 ≡ 𝐺(𝛽1 + 𝛽2𝑥) [1 − 𝐺(𝛽1 + 𝛽2𝑥)]⁄ , so 

that E(𝑌|𝑋 = 𝑥) = 𝐺(𝛽1 + 𝛽2𝑥). Like 𝑌, the function 𝐺(∙) must be double bounded 

so it is specified as one of the following alternative models: Logit (Case L), Probit (P), 

Cauchit (C) and Log-log (LL). These specifications are chosen so as to consider dif-

ferent forms of 𝐺(∙), namely in terms of symmetry and tail behaviour. As is well 

known, the Logistic, standard Normal and Cauchy functions are symmetric about . 5 

and, consequently, approach 0 and 1 at the same rate. On the other hand, the loglog 

model is not symmetric, increasing sharply at small values of 𝐺(∙) and slowly when 

𝐺(∙) is near 1. The Cauchy distribution presents the heaviest tails, thus being more 

robust to outliers than the logistic and standard normal formulations. In all the cases 

considered for 𝐺(𝛽1 + 𝛽2𝑥), (𝛽1; 𝛽2) are set at (−1; 0.5). The conditional distribu-

tions adopted for generating 𝑉 correspond to those described in the general design. 

 

Table 2.1 

Estimated Sizes (%) of M1 and M2 Tests (5% Nominal Size) 

 L P C LL 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄  

M1 .052 .054 .056 a .054 

M2 .059 a .060 a .061 a .060 a 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 

M1 .053 .053 .051 .051 

M2 .058 a .057 a .057 a .057 a 

𝐷 = log𝐹𝑌(𝑍) + 1 

M1 .061 a .056 a .049 .052 

M2 .067 a .062 a .066 a .068 a 
  

a : 5% rejection rate outside 95% confidence interval. 
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 Table 2.1 reports the empirical size of the tests M1 and M2 at the 5% nominal 

size, for each functional form of the (error-free) conditional mean. Once again, the 

tests based on the MTCCJ copula (under which 𝐷[𝐹𝑌(𝑍)] = log 𝐹𝑌(𝑍) + 1) prove un-

reliable in most cases, with reference to the asymptotic 𝜒1
2 critical values. A few ex-

ceptions to this finding now occur with the M1 tests and Cauchit/Log-log null 

functional forms, under which either the first test in the table (with 𝐷[𝐹𝑌(𝑍)] =

𝐹𝑌(𝑍) − 1 2⁄ ) fares worse or the nominal 5% rejection probability is not rejected. 

Nonetheless, the poor performance of all M2 tests again seems clear, systematically 

oversized with reference to asymptotic critical values. For this reason, as in Subsec-

tion 4.2, only the power estimates of the M1 tests are shown below. 

 

Table 2.2 

Estimated Powers (%) of M1 Test (5% Nominal Size) 

 L P C LL 

𝑉 + 𝑦⌋𝑦 ~ 𝐵𝑒𝑡𝑎(1 (1 − 𝑦)⁄ , 2) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .093 .088 .106 .076 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .049 .051 .049 .067 

𝐷 = log𝐹𝑌(𝑍) + 1 .081 .075 .045 .083 

𝑉⌋𝑦 ~ 𝒩𝒯(0,1) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .614 .959 .700 .998 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .311 .475 .301 .654 

𝐷 = log𝐹𝑌(𝑍) + 1 .552 .946 .440 .996 

𝑉⌋𝑦 ~ 𝒰(−𝑦 2⁄ , (1 − 𝑦) 2⁄ ) 

𝐷 = 𝐹𝑌(𝑍) − 1 2⁄     .674 .976 .744 .999 

𝐷 = [2𝐹𝑌(𝑍) − 1]3 .347 .547 .348 .733 

𝐷 = log𝐹𝑌(𝑍) + 1 .602 .963 .492 .996 

 

 

 Table 2.2 displays power estimates for the M1 tests. One obvious remark con-

cerns the performance of the tests with predominantly small amounts of ME – the 

case under the Beta distribution with null conditional mode.(3) In such cases, the low 

                                                           
(3) Similar results were obtained with ME following a conditional truncated normal with null 
conditional mode. 
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power of all the variants of the test is noteworthy, namely the Packett copula-based 

test. On the contrary, power estimates are rather high under more harmful ME, as in 

the remaining two cases. In this regard, the Plackett copula test again seems to fare 

worse than the other two (with a cautionary note on the MTCCJ test, given its exces-

sive empirical size with logit and probit functional forms). As in Subsection 4.2 (no 

covariates), the M1 test based on 𝐷[𝐹𝑌(𝑍)] = 𝐹𝑌(𝑍) − 1 2⁄  appears as the most 

powerful in every situation considered. The only caveat is now suggested by the case 

with a null Cauchit conditional mean, under which the test (contrarily to the 

remaining tests) appears slightly oversized (check Table 2.1). 

 

5 Concluding Remarks 

 

This paper addresses the problem of ME of double bounded random variates, a con-

text which does not allow adoption of classical assumptions concerning ME. 

Although, for the most part, the text is concerned with fractional variables, the main 

ideas here suggested can obviously be employed with any continuous double 

bounded variate of interest. The paper adopts what might be termed an ‘indirect’ 

approach to the issue of ME, by examining the dependence between the latter and 

the unobserved error-free variate of interest. The resulting specification test can be 

formalized in different ways, depending on the particular bivariate copula which is 

used to specify these two variables’ joint distribution. The simulation results, on the 

fractional case, suggest that at least one variant of the considered score tests is both 

reliable and acceptably powerful in the presence of a fractional variable measured 

with error. 

 The present text has suggested several hints for future related work. One such 

hint consists on the adaptation of the present ideas to the development of tests for 

nonclassical ME of other types of continuous variables (earnings, for example – see, 

e.g., Gottschalk and Huynh, 2010). Also, the extension of the proposed copula-based 

procedure to the case of multivariate fractional variables (see, e.g., Mullahy, 2015; 

Murteira and Ramalho, 2016) appears as a challenging avenue for subsequent 

research. 
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