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Abstract 

Recent evidence suggests that fertility rates are (and will be expected to remain in 

the future) below the replacement level for several countries and especially for the 

most technological advanced ones, which indicates that the World population will 

start decreasing sooner or later. In the light of this, we reconsider the Empty 

Planet result – Jones (2022) – and include human capital and class size effects in 

R&D endogenous growth models with decreasing population. We find that the 

introduction of human capital mitigates, or even overcomes, the Empty Planet 

result. In particular, under some mild conditions, our setting allows obtaining 

simultaneous long-run economic growth and secular productivity stagnation.  
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1. Introduction  

 

Some evidence, as well as recent literature, highlights the fact that current 

fertility rates tend to a level that is definitely below the replacement level, 

indicating that in the long-run the plausible scenario would be that of a 

population decrease.  

In a very recent paper, Jones (2022) analyzed the consequences of a declining 

population for economic growth within the endogenous-growth setting with 

scale-effects (à la Romer, 1990) as well as the semi-endogenous one (Jones, 

1995). The predictions of these models point to stagnation of growth in the 

very long-run (the empty planet result). For example, one of these predictions 

shows that the long-run level of GDP per person would be around 60-90% 

higher than current income and then stagnates at that level. The intuition of 

the result is simple. The model uses labor to be allocated to the R&D sector, 

the ultimate engine of growth. As increasing population fuels growth, so 

decreasing population would lead to stagnation. Then, the author 

characterizes the decentralized and social planner equilibria of his model with 

endogenous fertility. Besides showing that declining population may be the 

optimal outcome of people’s choices, it is also showed that the planner 

problem can involve multiple steady states. 1  Despite the interest of the 

 
1 Sequeira et al. (2018), using a stylized Schumpeterian endogenous growth model, obtain 

either fully endogenous growth without scale effects or stagnation. The possibility of 

stagnation in their paper is due to the increase in complexity. 
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analysis, results depend on the crucial assumption that the knowledge 

production function includes only raw labor (directly depending on population) 

which is not a reproducible factor (e.g., Rebelo, 1991). One of the major 

advances in the endogenous growth theory after the scale-free breakthrough 

lead by Jones (1995) and Dinopoulos and Thompson (1999, 2000) was the 

inclusion of human capital as an additional engine of growth that interacts 

together with R&D (Arnold, 1998, Funke and Strulik, 2000). Human capital 

enters as an input in the knowledge production function, substituting the role 

of raw labor. This implies that the economy has a reproducible factor of 

production influencing R&D.  

Our main aim in this paper is to study the long-run growth predictions of 

endogenous growth models with R&D and human capital accumulation in the 

presence of negative population growth. To this end, we set-up endogenous 

growth models with both R&D and human capital accumulation and negative 

population growth and study their long-run properties. An additional feature 

we introduce to the models is the possibility of positive class-size effects 

induced by a declining population on the accumulation of human capital (see 

e.g. Mathis, 2017; Bucci, 2022). 

Our findings indicate that, despite these models do not imply the possibility of 

stagnation in real GDP per capita, those including a class size effect allow for 

the possibility of stagnation in the level of technology. Moreover, when the 

models are taken to data with several parameterizations, we obtain that the 
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level of technology should stagnate in the very long-run. This conclusion is not 

negligible for three main reasons, and is different from the results and the 

focus of the main related papers (namely, Jones, 2022; Bucci, 2022).  

First, a stream of very recent literature suggests that TFP tends to long-run 

stagnation. For instance, in Kasparov et al. (2012), the authors point out that 

the collapse of advanced country growth is not merely a result of the financial 

crisis. They argue that these countries’ weakness reflects secular stagnation in 

technology and innovation. Fernald (2014) presents evidence according to 

which labor and total factor productivity (TFP) growth slowed prior to the 

great recession. He argues that it marked a retreat from the exceptional, but 

temporary, information technology-fueled pace from the mid-1990s to early in 

the twenty-first century. Gordon (2012) also argues that the slowdown 

happening after the 2000s roots at the features of the innovations (computers, 

the web, mobile phones) of the late XXth century, which spillovers were less 

long-lasting than the ones of the innovations of the second industrial 

revolution and anticipates scenarios of long anemic economic growth or even 

stagnation (see also Bloom et al., 2017). More recently, Brinca et al. (2017) 

pointed to the efficiency wedge (measured by A in the final-good production 

function) as the main source of the great recession at the end of the 2000s 

decade. 

Second, we provide an additional mechanism (the class-size effect that can be 

quite reasonable) that contributes to that possibility. Last but not least, TFP 
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stagnation in the long-run does not imply GDP per capita stagnation in the 

long-run as previous literature, mentioned above, tends to indicate. 

In a future work, companion to the present one, we plan to study the social 

planner equilibrium with endogenous fertility as well as to quantify the class-

size externality vis-à-vis the usual externalities coming from the production of 

knowledge: the standing-on-shoulders effect and the stepping-on-the toes effect. 

In the next section we present the models. We divide the model section in 

three subsections. First, we present the model without the possibility of class-

size effects and study their long run properties. Second, we present the model 

with the possibility of class-size effects and study their long run properties. 

Third, we take the model to data through calibration and present quantitative 

results both for the long-run and for transitional dynamics. In the third 

Section, we conclude. We also provide an Appendix with all the detailed 

proofs. 

 

2. The Basic Setup: Exogenous Human Capital Accumulation and 

Negative Population Growth 

 

We embed exogenous human capital accumulation into an integrated R&D-

based growth model able to reconcile the fully-endogenous-growth approaches 

by Romer (1990) and Grossman and Helpman (1991) with the Jones (1995 

and 2022)’s semi-endogenous-growth version of these models. At this aim, we 
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postulate that the production of goods ( )tY  and the invention of new ideas 

( )tA  are obtained through reproducible human capital ( )tH , such that: 

t t t
Y A H= ,           0 . (1) 

In Eq. (1), 
t
Y  is aggregate real GDP (the numeraire), 

t
H  is aggregate human 

capital, and 
t
A  is the number of existing ideas at t. In per capita terms, Eq. 

(1) can be recast as: t t t
y A h= , with t

t

t

H
h

N
=  and = t

t

t

Y
y

N
 representing per 

capita human capital and per capita GDP, respectively, and 
t
N  being the size 

of population at t. We assume that population grows over time at an 

exogenous rate 
• 

 
 

/
t t
N N  and that such a rate is negative, i.e.: 

•

= −  0t

t

N
n

N
  or  0

nt

t
N N e−= ,   0n .2 

Per capita human capital evolves over time according to: 

( )t t t
h h n h 
•

= − −  (2) 

where   0  is the efficiency of human capital accumulation, ( )  0,1  is the 

depreciation rate of human capital, and n  is the negative of the population 

growth rate, i.e. 

•

= − t

t

N
n

N
. At this stage, to keep things as much simple as 

possible, we assume that there is no allocation of human capital between 

 
2 As in Jones (2022), our model features an exogenous negative growth rate of population. In 

an Appendix we show that a model with endogenous fertility and endogenous choice of human 

capital can indeed yield a negative growth rate of population, as well. 
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production and educational activities. In Eq. (2), a negative growth rate of 

population (
•

= − /
t t

n N N ) now increases per capita human capital growth, as 

the term 
t

n h  turns out to be positive. We shall come back to the economic 

rationale of this observation in Section 2.1, where we formally account for the 

possible existence of class-size effects in the process of students’ skill-

acquisition. 

As in the canonical semi-endogenous growth literature (Jones, 1995 and 2022), 

the time-evolution of the stock of ideas (
t
A ) is described by the following 

differential equation:  

 
•

−= 1

t t t
A A H ,         0 ,        0 1 ,       − 1 1  (3) 

where   and −1  measure the extent of the duplication and intertemporal 

spillover effects of research, respectively. Eq. (3) can be immediately recast as 

( )



•

−= 1

t t t t
A A N h , which best emphasizes the fact that in our model-economy 

(unlike Jones, 2022) human capital per capita can be purposefully 

accumulated over time through formal education (Eq. 2). If we set  = 0  and 

 = 1 , our model is also able to embed the fully endogenous growth literature 

displaying strong scale effects in population size (e.g., Romer, 1990; Aghion 

and Howitt, 1992; Grossman and Helpman, 1991), as in this case the growth 

rate of ideas would be written as: 

•

=t
t t

t

A
h N

A
. 

Following the same steps in Jones (2022, p. 41), by integrating the differential 

equation: 
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( ) ( )( )1

0 0

t t

n tnt

t t

N h

A dA N e h e dt



  
− +− −

 
 

=  
 
 

  , 

it is immediately obvious that we have now two different effects of the 

negative growth rate of population, n : (i) On the one hand, it decreases the 

total amount of resources (population size, 
t
N ) that can potentially be 

allocated to innovation, so contributing to the empty planet (stagnation) 

result, whereas (ii) On the other hand, it increases the quality of existing 

people (
t
h ), which has an opposing effect on the empty planet (stagnation) 

result. As far as the rate of innovation is concerned, in this simple model these 

two effects cancel each other out. The following proposition presents the main 

result both for the semi-endogenous growth model (with exogenous human 

capital accumulation and without scale effects of population), and the fully-

endogenous growth model (with exogenous human capital accumulation and 

potential scale effects of population). 

 

Proposition 1 

(a) In the semi-endogenous growth case –   0  and  0 1  in Eq. (3) – 

the differences in the stock of knowledge 
0

t
A

A
 and in the  output per capita 

0

t
y

y
 are given, respectively, by: 

( )
( )



  

  

−
 
  = − −   −  

1/

0

0

1 1
tt A

A g
e

A
 

(4) 

( ) ( )

 

    

  

− − +
  −  = − − −       −   

/

0

0

1 1 1
t n tyt

g ny
e e

y
,        = + − +

0 0y A
g g n

 

(5) 
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(b) In the fully endogenous growth case –  = 0  and  = 1  in Eq. (3) – the 

differences in the stock of knowledge 
0

t
A

A
 and in the output per capita 

0

t
y

y
 

are given, respectively, by: 

( )
( ) 

 

− 
− 

 −
=

0 1

0

tAg e
t
A

e
A

 (6) 

( )

( )
 



    

− −   − −  −   − + 

 
 

=  
 
 

01
1 1

0

tyg n
e

n tt
y

e e
y

,     = + − +
0 0y A
g g n  (7) 

Proof.: See Appendix A. 

 

Regarding the semi-endogenous growth model with exogenous human capital 

accumulation [Part (a) of Proposition 1], Eq. (4) clearly shows that, for any 

positive initial growth rate of technology, A0g > 0 , and any positive growth 

rate of aggregate human capital,  > , we can observe perpetual growth of 

t
A . This result stresses the fundamental role played by human capital 

accumulation in the model. Similarly, in Eq. (5), with ( )  = + − +
0 0y A
g g n , 

output per capita always grows whenever A0g > 0  and positive aggregate 

human capital growth is allowed ( > ). At this stage it is worth pointing it 

out that the presence of a negative growth rate of population 

,  / 0
t t

nN N n
•

= −


 
 

 contributes to having positive growth of human capital 

per capita even when total human capital is not growing, i.e.  = . If we 

check the behavior of Eqs. (4)–(5) in the very long run (i.e., when t → + ), 

then we can state the following conclusions: 
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▪ If 
0

0
A
g   and   , 3  both ratios tend to infinity, = → +

0 0

t t
A y

A y
, and 

there is perpetual growth in the level of technology and in the level of 

income per capita together; 

▪ Instead, if   , then 
( )





  

 
 = − 
 −
 

1/

0

0

1 0t A
A g

A
 and constant, which 

implies stagnation in the level of technology, but not in the level of income 

per capita, as long as 0
t

t

h
n

h
 = − +  , implying → +

0

t
y

y
; 

▪ Finally, if    and 0
t

t

h
n

h
 = − +  , then 

0

0t
y

y
→ , which implies a 

constant reduction of per capita income towards stagnation, as well. 

 

Overall, the results stated above suggest that in a semi-endogenous growth 

setting with exogenous human capital accumulation we can observe perpetual 

growth, simultaneously in the level of technology and in the level of real 

income per capita, if   , for any 
0

0
A
g  . However, even if the level of 

technology stagnates (  ), we can still observe an unbounded increase in 

per capita income provided that per capita human capital continues to rise 

over time, 0
t

t

h
n

h
 = − +  . Yet, at this stage, we must notice that the case 

for a negative growth rate of total human capital, implied by   , is at odds 

with the available data on human capital accumulation worldwide (see, for 

 
3 The specific case  =  is analyzed separately in Appendix B. 
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example, Bils and Klenow, 2000; Feenstra et al., 2015; World Bank, 2021), 

hence we can safely neglect such a scenario in the remainder of the paper. 

As far as the fully-endogenous growth model with exogenous human capital 

accumulation is concerned [Part (b) of Proposition 1], Eq. (6) shows that for a 

positive initial growth of technology, 
0

0
A
g , and a positive growth of total 

human capital,   , we can observe perpetual growth of 
t
A . This result 

underscores once again the positive role played in the model by human capital 

investment. Similarly, in Eq. (7) note that, for any 
0

0
A
g  and   , output 

per capita always grows because of the growing human capital, and 

(eventually) of the growing technology, as well. Therefore, contrary to Jones 

(2022), the inclusion of positive human capital growth at the aggregate level 

(and, hence, at the per-capita level, too!) allows the economy to escape the 

pessimistic Empty Planet Result both in semi-endogenous and fully 

endogenous R&D-based growth models. 

If we check the behavior of Eqs. (6)–(7) in the very long run (i.e., when 

t → + ), then we can state the following conclusion: 

▪ If A0g > 0  and   ,4 then both ratios tend to infinity, t t

0 0

A y
=

A y
→+ , and 

there is perpetual growth simultaneously in the level of technology and in 

the level of real income per capita. 

In what follows, we extend the basic growth framework analyzed till now in 

several directions. 

 
4 The specific case  =  is analyzed separately in Appendix B. 
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2.1 Accounting for the existence of class-size effects in the 

accumulation of human capital per capita 

 

In this section, we analyze the first extension of the basic model described 

above. In the extension proposed here we take explicitly into account the 

existence of possible ‘class-size-effects’ in the law of motion of human capital 

per capita. Indeed, research in the field of the economics of education seems 

now to indicate that there is a positive effect of a smaller class size on an 

individual student achievement (see, among many others, Bandiera et al., 2010; 

Konstantopoulos and Chung, 2009; and the recent survey by Mathis 2017). 

Within the huge class-size debate, the available evidence now shares the view 

that the effect of a class-size reduction (especially in the first years of 

schooling) is different across distinct groups of children, and is generally larger 

for those children coming from minorities or other specific disadvantaged 

communities. In Hatties (2005, p. 396)’s words the whole class-size literature 

can be condensed as follows: 

“…Across these meta-analyses, summaries of major initiatives, and newer studies, 

the average effect-size is 0.13. Thus, the typical effect of reducing class sizes from 

25 to 15 is about 0.10–0.20. Perhaps as interesting as the typical value, is that 

there is not a lot of variance in these estimates; the mean is a reasonable 

summary of the effects of reducing class size. These studies represent a variety of 

designs including meta-analysis, longitudinal studies, cross-cohort studies, are 

from many countries (USA, UK, Israel, Bolivia), from across all grades, and use 

some of the most sophisticated statistical methods available. There is remarkable 

consistency across the effect-sizes from these many diverse studies…”. 
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Economically, the existence of a class size effect reinforces the idea that a 

declining population may have a positive impact on the accumulation of 

human capital per capita, as a smaller population size (a proxy for a reduced 

class size) leads to a better student’s school-performance. In the model of this 

section the magnitude of the class size effect is measured by a parameter 

0 < <1  which, by multiplying the negative growth rate of population, 

contributes to increase the whole productivity of human capital in the 

production of new human capital. In other words, we now rewrite Eq. (2) as: 

( )t t t
h n h h 
•

= + − ,       0 < <1. (8) 

Unlike Eq. 2 (where =1 ), we consider more realistic the case where  is 

closer to 0 than to 1, so taking explicitly into account the evidence that, on 

the whole, the effect (on individual schooling performance) of reducing class 

sizes is generally positive but, at the same time, also rather small. Formally, 

and for the sake of simplicity, in Eq. (8) the class size effect is introduced as a 

positive and linear ( )0 < < 1  effect of the negative growth rate of population 

/
t t

n N N
• 

= − 
 

 on the productivity ( )  of the existing human capital ( )th  in 

the acquisition of new skills at an individual level 
t
h
• 

 
 

.5 Using Eq. (8), and 

following the same steps of the previous section, we come to the following 

results (Proposition 2). 

 

 
5 Class size effects are often included in linear regressions for schooling achievements (e.g., in 

test scores), as in Bandiera et al. (2010) for example. 
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Proposition 2 (accounting for class-size effects) 

(a) In the semi-endogenous growth case –   0  and  0 1  in Eq. (3) – 

the differences in the stock of knowledge 
0

t
A

A
 and in the per person output 

0

t
y

y
 are given respectively by: 

( )
( )



  

  

 + − −
 

 
  = −  −    + − −   

1/

10

0

1 1
1

n tt A
A g

e
A n

 (9) 

( )
( ) ( )

/

10

0

1 1 1
1

n t n tyt
g ny

e e
y n

 

    

  

 + − − + − 

  −   = − − −     + − −   

, 
0 0y A
g g n  = + − +  (10) 

  

(b) In the fully endogenous growth case –  = 0  and  = 1  in Eq. (3) – the 

differences in the stock of knowledge 
0

t
A

A
 and in the per person output 

0

t
y

y

are given, respectively, by: 

( )
( )10 1

1

0

n tAg e
nt

A
e

A

 

 

 + − −
  

− 
+ − −  

=  (11) 

( )
( )

( )
101

1 1
1

0

n tyg n
e

n n tt
y

e e
y

 



    

 + − −
 

 −  
 −  − 
 + − − + −  

 
 

=  
 
 

,     
0 0y A
g g n  = + − +  

 

(12) 

Proof.: See Appendix A. 
 

Thus, in the presence of class-size effects, the stagnation result for the level 

of technology can occur if and only if ( )1 0n  + − − 
 

   
1

n n
 −

 =
−

, 

where n  represents the lower bound of the rate of population decline above 

which the level of technology will stagnate sometime in the future. The larger 

the exogenous efficiency of human capital accumulation ( )  and the smaller 

the depreciation rate of human capital ( ) , the faster the population decline 
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should be to start observing stagnation in technology. On the other hand, the 

smaller the class size effect ( )0 < < 1  and the smaller the threshold level of 

population decline above which technology stagnation will be obtained. 

We now focus our attention on the case 
0

0
A
g   and   ,6 and check the 

behavior of Eqs. 9–12 in the very long run ( ), when i.e. t → + . 

If 
0

0
A
g  ,   ,7 and ( )1 0n + − −  ,8 both ratios tend to infinity, 

0 0

t t
A y

A y
= → + , and there is perpetual growth in the semi-endogenous as well 

as in the fully endogenous model. 

On the other hand, if 
0

0
A
g  ,   , and ( )1 0n + − −  , then: 

( )

1/

0

0

1 0
1

t A
A g

A n





  

 
 

= −  
 + − −   

 ; 
( )

( )

/

0

0

1
1

n tt A
y g

e
y n

 

 

  

+ −
  
 

 = −  
 + − −   

 

in the semi-endogenous growth model, 

and: 

( )
0

1

0

0

Ag

nt
A

e
A

  − + − −
 =    ; 

( ) ( )
01

1

0

Ag

n n tt
y

e e
y




    

 
 −
 + − − + − 

 
 

=  
 
 

 

in the fully endogenous growth model. 

 
6 This is done to be consistent with the model without class-size effects (see Proposition 1). 

Indeed, in that framework, if 
0

0
A
g   and   , there is growing total (and per capita) 

human capital, and stagnation (both in the level of technology and in the level of income per 

capita) can never occur, either in the semi-endogenous or in the fully endogenous growth 

model. For the sake of completeness, though, Appendix B studies the specific case  =  in 

the presence of class-size effects in human capital investment, too. 
7 Which implies positive growth of human capital per capita. 
8 Which implies positive growth of aggregate human capital. 
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Overall, this means that with 
0

0
A
g   and    we would observe long-run 

stagnation (in both the semi-endogenous and fully endogenous models) only in 

the level of technology, and not in the level of output per capita, just when 

( )1 0
t

t

H
n

H
 = + − −  . As a result, with respect to Jones (2022) –where 

there is no human capital accumulation– we conclude that, even accounting 

for the presence of class-size effects, the inclusion of (aggregate and, hence, per 

capita) human capital accumulation at positive rates allows preventing the 

empty planet outcome simultaneously in the level of real income per capita 

and in the level of technology. The inclusion of class-size effects does not 

exclude the possibility of observing technological stagnation (and only that!) 

just for a particular combination of parameter-values, namely when: 

( )1 0
t

t

H
n

H
 = + − −  . The following sub-section analyzes numerically 

these conclusions.  

 

2.2 Some Quantitative Results 

 

Despite the introduction of positive (even though small, 0 1  ) class size 

effects may lead, under a particular combination of parameter-values 

( )1 0n  + − − 
 

, to technological stagnation in the very long run, it is 

useful to analyze if, quantitatively, we could or could not ultimately expect 

such an outcome to occur in real life. To do this, we stick to Bloom et al. 
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(2020) and Jones (2022) and use the following parameter-values: 3 = ; 1 =

; 1 = ; 0.01n = . Furthermore, from the Penn World Table 10.0 by Feenstra 

et al. (2015) for the last 70 years in the US, we see that the annual average 

growth rate of per capita human capital ( )0h
g  has been equal to 0.534%. In 

our model with class-size effects, this implies: 
h
g n    ( )1 0n + − −  . 

If we use 
0

0.02
y
g =  (Jones, 2016, Fig. 1; Feenstra et al., 2015), then 

( )0 0 0

1
0.01466

A y h
g g g


= − = , a value not so different from the ‘initial TFP 

growth rate of 1%’ of Jones (2022, p.10). With these parameter-values, using 

the two equations already obtained above when 
0

0
A
g  ,   , and 

( )1 0n + − −  , we get:  

1/3

0

0.01466
lim 1 3 2.1854

0.00466
t

t

A

A→+

 
= + = 
 

 

for the semi-endogenous growth model, 

and: 

0.01466

0.00466

0

lim 23.2411t

t

A
e

A→+
= =  

for the fully endogenous growth model. These two values are higher than those 

obtained by Jones (2022) – compare with values around 1.59 and 2.72, 

respectively.9 The crucial difference across our and Jones (2022)’s models is 

 
9 To obtain these two numbers, use the values in Jones (2022, pp. 9-10) and plug them in his 

equations for *A  in Result 1 and Result 2 (Jones, 2022, pp. 7 and 9). One should note that 

the higher   and the lower   (consistently with Jones, 1995, and Alvarez-Peleaz and Groth, 

2005), the higher the very long-run level of technology, t
A , above which technological growth 

would vanish (and stagnation of technology would occur). 
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that in our case the growth rate of output per capita is positive in the very 

long run and equal to the growth rate of human capital (0.534%). 

Alternatively, we could have used the estimated class-size effect of 0.1=  

from e.g. Bandiera et al. (2010). Given a growth rate of per capita human 

capital of 0.00534
t

t
h

n
h

 = + − = , we have: 0.00534 0.1n − = − . 

Remember that in the model with class-size effects we would observe TFP 

stagnation at some point in time in the future when: 

0.00534 0.1

1 0.9
n

n − −
 =

−
    0.00534n  . 

Notice that this lower-bound (0.534%) for the negative growth rate of 

population that guarantees future stagnation in the level of technology is 

lower than the value of 1% used by Jones (2022).  

For different reasonable sets of parameters available in the literature, the 

following Table 1 presents the constant values of 
0

lim t

t

A

A→+
 in the semi-

endogenous and fully endogenous growth models with the presence of class-

size effects in the accumulation of per capita human capital.10 All the scenarios 

considered assume the data-based values of: 0.01n = , 

0.00534
t

t
h

n
h

 = + − = , and 
0 0

0.02
y A
g g n  = + − + = .  

 
10 It is worth noting that while the normalization of   (see Jones, 2022, Table 2, p. 27) is 

neutral for the long-run level of GDP per capita in the presence of declining population, the 

same normalization is not neutral for the level of technology ( )tA , for which stagnation in the 

technological level occurs. 
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Results reported in Table 1 appear quite sensitive to oscillations of the 

spillover ( )1 − , duplication ( ) , and gains of specialization ( )  parameters 

in the semi-endogenous growth model, and only to the gains of specialization 

( )  parameter in the fully endogenous growth model.11 

 

Table 1: Technology Stagnation Results according to Different Calibrations 

Parameter Values Source 

0

lim t

t

A

A→+
 

0

lim t

t

A

A→+
 

  Semi-

Endogenous 

Growth 

Model 

Fully 

Endogenous 

Growth 

Model 

0.271 =           0.196 =  

0.5 =  

Jones and Williams (2000, 

Table 2) 

4376, 55 9347560 

0.417 =           0.196 =  

0.75 =  

Jones and Williams (2000, 

Table 2) 

245,56 

 

9347560 

0.2 =              0.5 =  

0.2 =  

Sequeira and Neves (2018, 

2019) and USPO 

20615,2 540,15 

 

Note:  To infer the gains from specialization parameter   in the last line we use data from 

USPO (Marco et al., 2015), calculating the annual growth rate of the stock of patents 

between 1950 and 2014. 

 

As a further exercise, we now simulate the series for the level of technology 

and the level of GDP per capita across time, using the baseline calibration 

values in Jones (2022) – panel (a) in the two Figures below - as well as our 

alternative calibration in the first line of Table 1 – panel (b) in the two 

Figures below.  

 

 
11 A feature common to results in Jones (2022). 
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(a) 
0

3; 1; 1;  1%;  2%     
y

n g  = = = = =       (b) 
0

0.271;  0.196; 0.5;      1%;  2%
y

n g  = = = = =  

Figure 1:  Simulation of a Transitional Dynamics Path for two possible calibrated parameter 

sets in the semi-endogenous growth model. Note: the y-axis is in log-scale. 

 

 

 

(a) 
0

3; 1; 1;  1%;  2%     
y

n g  = = = = =       (b) 
0

0.271;  0.196; 0.5;      1%;  2%
y

n g  = = = = =  

Figure 2:  Simulation of a Transitional Dynamics Path for two possible calibrated parameter 

sets in the fully endogenous growth model. Note: the y-axis is in log-scale. 

 

As expected, stagnation of TFP is faster in Figures 1a and 2a than in Figures 

1b and 2b, while there is no stagnation in GDP per capita. Also, as expected, 

the TFP-stagnation result is more difficult to be seen in Figure 2 (fully 

endogenous model) than in Figure 1 (semi-endogenous model), which is also 

consistent with the theoretical results presented above and with results 

presented in Table 1. 
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A permanent positive shock in the birth rate or a permanent negative shock 

in the death rate can make the economy switch towards an equilibrium where 

even technology would not stagnate. This can be immediately seen by 

observing that a fall in the value of n may imply that the condition  

( )1 0n + − −   is no longer fulfilled. 

 

3. Conclusion 

There are two main motivations for this paper. First, demographic data is 

showing that population decline will soon become a stylized fact for the most 

part of the World and it is already a fact in the most advanced ones. Then 

human capital has been pointed out as an important source of growth and 

productivity. 

We depart from the recent contribution of Jones (2022) and introduce human 

capital in the technological knowledge (or R&D) production function. Our 

main result is that, once a class size effect in human capital accumulation is 

accounted for, it is possible to reconcile the TFP secular stagnation result 

with that of a positive long-run growth rate in GDP per capita. 

This paper also opens prospects for future work. First, we intend to consider 

the case of endogenous fertility choices by agents, with the objective of 

studying the conditions under which the choice of low fertility-levels (below 

the replacement level) may be optimal, along with the influence of class size 
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effects on this choice. Then, we may also consider the case in which there is a 

higher bound or high degree of obsolescence of human capital. 
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APPENDICES 

A. Derivation of Propositions 1 and 2 (exogenous human capital 

accumulation and negative and exogenous population growth) 
 

PROOF OF PROPOSITION 1 

(a) Semi-endogenous growth model (  0  and  0 1 in Eq. 3):  

Integrate the differential equation: 

( )


 − = 
1

t t t t
A dA N h dt . 

This gives:  

( ) ( )

( ) ( )

( )

  

   








  

− +−

−

 = 
  

= +
−

0 0

0 0

0

1
         

n tnt

t

t

t

A N h e e dt

N h e
A C

 

By setting t=0 we can find the constant term 
0
C  as:  

( )
( )

0 0

0 0

N h
C A






  
= −

−
 

If 
0
C  is replaced in the expression for 

t
A  written above, after some algebra, it 

is possible to conclude that: 

( )
( )

( )






  


  

−

−

 
  = − −   − 
 

1/

0 0 0

0

1 1
tt

N h AA
e

A
. 

Finally, by using ( )0 0 0 0A
g N h A


 −= , we get Eq. (4) in the text: 

( )
( )



  

  

−
 
  = − −   −  

1/

0

0

1 1
tt A

A g
e

A
. 

Using Eq. (1) in the text gives: 

0 0 0

t t t
y A h

y A h


 

=   
 

 

By substituting in the above expression ( )

0

n tt
h

e
h

 − +
= , and the ratio 

0

t
A

A
 from 

Eq. (4) in the text we get: 
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( ) ( )
 

    

  

− − +
    = − −       −   

/

0

0

1 1
t n tt A

y g
e e

y
 

As a final step, we now replace in the above expression 
0 0y A
g g n  = + − + . 

This allows us obtaining the following expression, which is Eq. (5) in the text: 

( ) ( )

 

    

  

− − +
  −  = − − −       −   

/

0

0

1 1 1
t n tyt

g ny
e e

y
   ∎ 

 

(b) Fully-endogenous growth model ( = 0  and  = 1  in Eq. 3):  

By setting  = 0 and  = 1 in Eq. (3) in the text, the law of motion of the 

stock of ideas (
t
A ) is transformed into: 

t t t t
A AN h
•

= .  

Integrate the differential equation: 

( )

( ) ( )

( ) ( )

 

 







− +−

−

=

= 

=

 



0 0

0 0

t
t t

t

n tnt

t

dA
N h dt

A

N h e e dt

N h e dt

 

which gives: 

( )
( ) 

 

−
= +

−

0 0
0

log
t

t

N h
A e C  

By setting t=0, we can immediately find the constant term 
0
C  as:  

( )


 
= −

−

0 0
0 0

log
N h

C A . 

If we use 
0 0 0A
g N h=  in the above expression and replace it in the expression 

for log
t
A , we finally get: 

( )
( ) 

 

− = − −
  −

0
0

log log 1
tA

t

g
A A e . 

From this expression we obtain immediately Eq. (6) in the text: 

( )
( ) 

 

− 
− 

 −
=

0 1

0

tAg e
t
A

e
A

. 

By using Eq. (1) in the text, we can express the output differences in per 

capita terms as follows: 
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
   

=       
   0 0 0

t t t
y A h

y A h
. 

By plugging in the above expression ( )

0

n tt
h

e
h

 − +
=  and 

0

t
A

A
 from Eq. (6) in the 

text, we get Eq. (7) in the text: 

( )

( )
 



    

− −   − −  −   − + 

 
 

=  
 
 

01
1 1

0

tyg n
e

n tt
y

e e
y

,     = + − +
0 0y A
g g n    ∎ 

 

PROOF OF PROPOSITION 2 

(a) Semi-endogenous growth model (  0  and  0 1 in Eq. 3):  

Integrate the differential equation: 

( )


 − = 
1

t t t t
A dA N h dt , 

which gives  

( ) ( )

( ) ( )

( )

  

   








  

+ −−

 + − −
 

 =  
  

= +
 + − −
 

0 0

1

0 0

0

1
      

1

n tnt

t

n t

t

A N h e e dt

N h e
A C

n

 

By setting t = 0 to solve for the constant 
0
C  gives 

( )
( )






  
= −

 + − −
 

0 0

0 0
1

N h
C A

n
 

If the constant 
0
C  is replaced in the general solution of the differential 

equation for the level of technology, we finally get: 

( )
( )

( )





  

  

−
 + − −
 

 
  = −  −    + − −   

1/

10 0 0

0

1 1
1

n tt
N h AA

e
A n

 

By using ( )0 0 0 0A
g N h A


 −= , we get eq. (9) in the main text: 

( )
( )



  

  

 + − −
 

 
  = −  −    + − −   

1/

10

0

1 1
1

n tt A
A g

e
A n

. 

 

By using Eq. (1) in the main text we can express per-capita output differences 

as: 
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0 0 0

t t t
y A h

y A h


 

=   
 

. 

By plugging in the equation above ( )

0

n tt
h

e
h

 + −
= and the differences in the 

stock of knowledge 
0

t
A

A
 obtained earlier, we get: 

( )
( ) ( )

/

10

0

1 1
1

n t n tt A
y g

e e
y n

 

    

  

 + − − + − 

  
   = − −     + − −   

 

Finally, by using in the last expression 
0 0y A
g g n  = + − + , we get the 

following equation, namely Eq. (10) in the text: 

( )
( ) ( )

/

10

0

1 1 1
1

n t n tyt
g ny

e e
y n

 

    

  

 + − − + − 

  −   = − − −     + − −   

   ∎ 

 

(b) Fully endogenous growth model ( = 0  and  = 1  in Eq. 3):  

By setting  = 0 and  = 1  in Eq. (3) in the text, the law of motion of the 

stock of ideas (
t
A ) is transformed into: 

t t t t
A AN h
•

= .  

Integrate the differential equation: 

( )

( ) ( )

( ) ( )

0

1

0

0 0

t
t t

t

n tnt

n t

dA
N h dt

A

N h e e dt

N h e dt

 

 






−

+ −−

 + −
 

=

= 

=

 



 

which gives:  

 

( ) ( )

( )

1

0 0

0
log

1

n t

t

N h e
A C

n

 


 

 + − −
 

= +
+ − −

 

By setting t=0, we can find the constant term 
0
C  as:  

( )
( )

0 0

0 0
log

1

N h
C A

n



 
= −

+ − −
 

If we use 
0 0 0A
g N h=  in the above expression and replace it in the solution of 

the differential equation, we obtain: 
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( )
( )10

0
log log 1

1

n tA
t

g
A A e

n

 

 

 + − −
  = − −

  + − −
 

From this expression we obtain immediately Eq. (11) in the text: 

( )
( )10 1

1

0

n tAg e
nt

A
e

A

 

 

 + − −
  

− 
+ − −  

=  

By using Eq. (1) in the text, we can express the per-capita output differences 

as follows: 

0 0 0

t t t
y A h

y A h


 

=   
 

 

By plugging in the above expression ( )

0

n tt
h

e
h

 + −
=  and the differences in the 

stock of knowledge 
0

t
A

A
 from Eq. (11) we get Eq. (12) in the text: 

( )
( )

( )
101

1 1
1

0

n tyg n
e

n n tt
y

e e
y

 



    

 + − −
 

 −  
 −  − 
 + − − + −  

 
 

=  
 
 

,  
0 0y A
g g n  = + − +    ∎ 

 

B. Derivation of results when  =  (models with exogenous human capital 

accumulation, negative and exogenous population growth, and with or 

without class-size effects) 
 

We start by analyzing what happens in the basic setup without class-size 

effects in per capita human capital accumulation (Eqs. 1-2-3 in the text). In 

this framework, when  = , the law of motion of human capital per capita 

becomes: 

t t
h nh
•

= . 

Below we provide results and derivations for the fully endogenous and the 

semi-endogenous models in this particular framework.  

 

(a)  Semi-endogenous growth model (  0  and  0 1 in Eq. 3):  

Integrate the differential equation: 

( )


 − = 
1

t t t t
A dA N h dt . 
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This gives:  

( )

( )

0 0

0 0 0

1
         nt nt

t

t

A N h e e dt

A N h t C












− =  
 

= +

  

By setting t=0 we can find the constant term 
0
C  as:  

0 0
C A=  

If 
0
C  is replaced in the expression for 

t
A  written above, it is possible to 

conclude that: 

( )
1/

0 0 0

0

1t
A

N h t A
A




 − = +  
  

. 

Finally, by using ( )0 0 0 0A
g N h A


 −= , we get: 

( )
1/

0

0

1t
A

A
g t

A



= +   . 

Using Eq. (1) in the text gives: 

0 0 0

t t t
y A h

y A h


 

=   
 

 

By substituting in the above expression 
0

ntt
h

e
h

= , and the ratio 

( )
1/

0

0

1t
A

A
g t

A



= +    we get: 

( )
/

0

0

1 ntt
A

y
g t e

y

 

= +     

As a final step, we can replace in the above expression: 
0 0y A
g g n= + . This 

allows us recasting 
0

/
t
y y  as: 

( )
/

0

0

1 ntt
y

y
g n t e

y

 





 
= + −   
 

   ∎ 

 

(b) Fully endogenous growth model ( = 0  and  = 1  in Eq. 3):  

By setting  = 0 and  = 1 in Eq. (3) in the text, the law of motion of the 

stock of ideas (
t
A ) is transformed into: 

t t t t
A AN h
•

= .  

Integrate the differential equation: 
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( )

( )

( )

0 0

0 0

t
t t

t

nt nt

dA
N h dt

A

N h e e dt

N h dt







−

=

= 

=

 



 

which gives: 

( )0 0 0
log

t
A N h t C= +  

By setting t=0, we can immediately find the constant term 
0
C  as:  

0 0
logC A= . 

If we use ( )0 0 0A
g N h=  and replace it in the expression for log

t
A  above, we 

finally get: 

0 0
log log

t A
A g t A=  +  

From this expression we obtain immediately: 

0

0

Ag tt
A

e
A


= . 

By using Eq. (1) in the text, we can express the output differences in per 

capita terms as follows: 

0 0 0

t t t
y A h

y A h


   

=       
   

. 

By plugging in the above expression 
0

ntt
h

e
h

=  and 0

0

Ag tt
A

e
A


= , we obtain 

( )0 0

0

A yg n t g tt
y

e e
y

 + 
= = ,   

0 0y A
g g n= +    ∎ 

 

We now analyze what happens in the basic setup augmented with the 

presence of class-size effects in per capita human capital accumulation (Eqs. 

1-3-8 in the text). In this framework, when  = , the law of motion of human 

capital per capita becomes: 

t t
h nh
•

= . 

Below we provide results and derivations for the fully endogenous and the 

semi-endogenous models in this particular framework. 
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(a)  Semi-endogenous growth model (  0  and  0 1 in Eq. 3):  

Integrate the differential equation: 

( )


 − = 
1

t t t t
A dA N h dt  

This gives:  

( ) ( )

( ) ( )

( )

0 0

1

0 0

0

1
       

1

nt nt

t

nt

t

A N h e e dt

N h e
A C

n




 










−

−

=  


= +

−


 

By setting t=0 we can find the constant term 
0
C  as:  

( )
( )

0 0

0 0 1

N h
C A

n







= −

−
 

If 
0
C  is replaced in the expression for 

t
A  written above, it is possible to 

conclude that: 

( )
( )

( )

1/

10 0 0

0

1 1
1

ntt
N h AA

e
A n











−

−

 
  = −  −   − 
 

. 

Finally, by using ( )0 0 0 0A
g N h A


 −= , we get: 

( )
( )

1/

10

0

1 1
1

ntt A
A g

e
A n







−
 
  = −  −   −  

. 

Using Eq. (1) in the text gives: 

0 0 0

t t t
y A h

y A h


   

=       
   

 

By substituting in the above expression 
0

ntt
h

e
h

= , and the ratio 

( )
( )

1/

10

0

1 1
1

ntt A
A g

e
A n







−
 
  = −  −   −  

 we get: 

( )
( )

/

10

0

1 1
1

nt ntt A
y g

e e
y n

 





−
  
   = −   −     −   

 

As a final step, we can replace in the above expression: 
0 0y A
g g n= + . This 

allows us recasting 
0

/
t
y y  as: 
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( )
( )

/

10

0

1 1 1
1

nty ntt
g ny

e e
y n

 





−
  −   = −  −  −     −   

   ∎ 

 

(b) Fully endogenous growth model ( = 0  and  = 1  in Eq. 3):  

By setting  = 0  and  = 1  in Eq. (3) in the text, the law of motion of the 

stock of ideas (
t
A ) is transformed into: ( )t t t t

A A N h
•

= .  

Integrate the differential equation: 

( )

( )

( )
( )

( )

0 0

10 0

1

t
t t

t

nt nt

nt

dA
N h dt

A

N h e e dt

N h
e

n







−

−

=

= 

= 
−

 
  

which, in the end, gives: 

( )
( )

( )10 0

0
log

1

nt

t

N h
A e C

n


−

= +
−

 

By setting t=0, we can immediately find the constant term 
0
C  as:  

( )
( )

0 0

0 0
log

1

N h
C A

n


= −

−
. 

If we use ( )0 0 0A
g N h=  and replace it in the expression for log

t
A  above, we 

finally get: 

( )
( )1

0
0

log log 1
1

nt
A

t

g
A A e

n

− = −  −
  −

 

From this expression we obtain: 

( )
( )10

1
1

0

ntA

n

g
e

t
A

e
A

−

−

 
 − 
 

= . 

By using Eq. (1) in the text, we can express the output differences in per 

capita terms as follows: 

0 0 0

t t t
y A h

y A h


   

=       
   

. 

By plugging in the above expression 
0

ntt
h

e
h

=  and ( )
( )10

1
1

0

ntA

n

g
e

t
A

e
A

−

−

 
 − 
 

= , we obtain 
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( )
( )10

1
1

0

ntA

n

g
e

ntt
y

e e
y

 −

−

 
 − 
 

=  , 

or, alternatively: ( )
( )101

1 1
1

0

ntyg n
e

n ntt
y

e e
y





−
 −    −  −    −
 

 
 

=  
 
 

,      
0 0y A
g g n= +     ∎ 


