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Abstract

The Zeuthen-Hicks bargaining model connects strategic and axiomatic
bargaining models by providing a description of the behavior of each party,
and showing that the entire process leads to the axiomatically founded
Nash bargaining solution. In its original formulation, the model treats
parties asymmetrically by considering different decision alternatives of the
focal party (who can either accept the opponent’s offer or make a coun-
teroffer, but not quit the negotiation) and the opponent (who can accept
the focal party’s offer or quit the negotiation, but not make a counterof-
fer). We extend the model to consider the full set of possible actions
from both sides, which requires explicit modeling of the expectations of
the parties concerning outcomes and outside options that become avail-
able during the process. We show analytically that under the assumption
of concave utilities of both parties, the bargaining process converges to
the nonsymmetric Nash bargaining solution. This result provides a new
interpretation of the parameters of the nonsymmetric Nash bargaining so-
lution, linking them to behavior in the bargaining process. Furthermore,
we perform a simulation study to analyze the outcomes for non-concave
utilities.

Keywords: Zeuthen-Hicks bargaining, Nonsymmetric Nash bargaining
solution, negotiator confidence

1 Introduction

Two-party bargaining is a classical negotiation problem with a clear practical
relevance (commercial contracts, labor contracts, corporate mergers, etc.). Hav-
ing been studied for a long time (Nash, 1950; Harsanyi, 1956), it still attracts
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the attention of many scholars (e.g., Bastianello and LiCalzi, 2019; Dias and
Vetschera, 2019a; Schweighofer-Kodritsch, 2018). A useful abstraction of the
two-party bargaining problem is to consider bargaining over one single issue.
Although many real-life bargaining problems involve several issues, aggregation
of multiple issues to utility values leads to a formally similar structure, if only
efficient solutions are considered. The present paper therefore, following the
literature, considers a single issue bilateral bargaining problem.

The literature often makes a distinction between axiomatic and strategic bar-
gaining models (e.g., Sutton, 1986). The former are mostly concerned with an
axiomatic characterization of bargaining solutions, such as the well-known Nash
Bargaining Solution (NBS) (Nash, 1950) or the Raiffa-Kalai-Smorodinsky solu-
tion (Kalai and Smorodinsky, 1975), but do not discuss the process of reaching
that solution. The latter emphasize the process of bargaining and the strategic
actions of parties, studying how parties decide which offers to exchange from
one round to the next. Among strategic bargaining models we can refer for in-
stance to the classical models of Zeuthen-Hicks (Zeuthen, 1930; Harsanyi, 1956;
Bishop, 1964) and Rubinstein (1982). Strategic and axiomatic models are often
related, as the Zeuthen-Hicks (Z-H) and Rubinstein models have been shown to
converge to the NBS under some assumptions.

In this work, we focus on the Z-H bargaining model, which is particularly
interesting as it considers the possibility of several negotiation rounds. Thus this
model has been used to study bargaining processes empirically (Fandel, 1985;
Vetschera, 2019). Because of its dynamic nature, it raises the issue of whether
the process will converge to the theoretically optimal solution or not (Dias and
Vetschera, 2019a). According to this model, the two parties (for illustrative
purposes we refer to them as the seller and the buyer) make alternating offers, in
which they change their position on the issue under negotiation. For illustrative
purposes, we refer to the issue as the price.

In each step of the process, the focal party needs to choose between accepting
the opponent’s offer or making a counter-offer. For example, the seller has to
decide whether to accept the price offered by the buyer, or demand a higher
price. The latter option is a gamble, as the buyer can concede and accept to pay
that price, or it may quit and both parties get a worse disagreement outcome.
Obviously, there is a critical probability at which the seller would be indifferent
between the two options. This critical probability is seen as an indicator of each
party’s current strength in the bargaining process: The party that can tolerate
a higher probability that the opponent terminates the negotiation has a better
position. Consequently, the party having the lower critical probability will make
a concession (weaken its demand), to obtain a critical probability that is higher
than the opponent’s. A brief overview of the formal structure of the model will
be presented in section 3.

Since the core of the Z-H model is the decision of one focal negotiator, it
considers the two parties initially in an asymmetric way, which leads to two
somewhat paradoxical situations. Each party considers a probability that the
other party quits, but both are contemplating a choice between accepting the
other party’s offer or making a new offer, i.e., none of the parties contemplates
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quitting. In this article, we will address this issue by extending the Z-H model in
a way that explicitly models the possibility of quitting by both sides. As we will
show, this extension requires that a party will quit the bargaining process only
if an attractive outside option appears, which was previously not available. The
model thus applies to negotiations in which this can occur. The second paradox
of the standard Z-H model is that this model on the one hand prescribes that
the weaker party should make a concession, i.e. change its offers, yet the only
reactions of the other party that each party anticipates are accepting that offer
or terminating the negotiation. In reality, one will expect that after making a
counter-offer, the negotiation process will go on for some more rounds in which
the other party will also change its position. The agreement that is eventually
reached will therefore likely be somewhere in-between the two offers currently on
the table. Our extended Z-H model therefore explicitly introduces the expecta-
tions a party might have about the ultimate outcome of the bargaining process.
These expectations depend on factors such as the confidence each party has in
its own bargaining skills versus those of the opponent, or contextual factors such
as time pressure. A more confident party will expect the final outcome to be
close to its own offer, a less confident party might expect the outcome to be
closer to the opponent’s current position.

In this paper, we show that under the assumption that the two parties have
concave utility functions, our extended Z-H model provides a full characteri-
zation of the exchange of successive offers, as well as the predicted outcome.
The analysis of the model yields the nonsymmetric (or asymmetric) NBS, i.e.,
the solution obtained in Nash’s framework without the symmetry axiom (see,
inter alia, Muthoo, 1999; Roth, 1979), in which the utilities are exponentially
weighted. Therefore, this work maintains a linkage between the strategic and
axiomatic interpretations of the Z-H model. We also show that the exponents
in the nonsymmetric NBS can be interpreted as parameters reflecting the confi-
dence of the negotiators, thus providing a new interpretation for the exponents
of the nonsymmetric NBS. This adds a process-related perspective to the usual
interpretation as “bargaining strength”.

These results hold only for concave utility functions. As a further contri-
bution of this article, we conduct a simulation study to examine the outcome
for utility functions which are not concave. In particular, this study assesses
the impact of negotiator confidence on the results, in terms of outcome for each
party, joint utility, and by how much the theoretical solution is missed.

Ensuing this introduction, Section 2 describes the standard Z-H model and
the proposed extensions. Section 3 provides analytical results for the extended
model, allowing to characterize the mutually optimal solution and the process
of reaching that solution when the utilities are concave. Section 4 presents a
simulation study for the general case in which utility functions are not neces-
sarily concave. Section 5 presents the main conclusions and suggests some of
the future research paths opened by this work.
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2 Model overview

We consider a negotiation between a buyer and a seller about one single trans-
action. Without loss of generality, we assume that the good to be traded has
a value of zero to the seller, and a value of one to the buyer. Trading thus
creates a value of one, that can be split among the two parties. The only issue
to be negotiated is the price, which thus describes how the potential gain from
trade of one is allocated to the parties. We denote the seller’s offer by s and the
buyer’s offer by b. The seller’s utility of some price x is us(x), and the buyer’s
utility is ub(x). Buyer and seller have opposing preferences: the seller prefers a
higher price and the buyer a lower price. Thus we assume throughout the paper
that u′s(x) > 0 and u′b(x) < 0.

As we have already outlined in the introduction, the standard Z-H model
treats the two parties asymmetrically and considers different actions for both
parties. While the focal party has to make a decision between accepting the
opponent’s offer and continuing the bargaining process with his or her own
offer, the opponent’s choices are whether to accept the focal party’s offer or to
quit the negotiation.

Before introducing our extensions, we briefly review the standard model from
the point of view of the seller as focal party. The seller has to decide whether
to accept the buyer’s offer b, which would provide a utility of us(b), or to make
a counter-offer s, which can either be rejected or accepted by the buyer. If the
buyer rejects and terminates the negotiation, both parties receive a disagreement
outcome d. In the buyer-seller example we consider, the disagreement outcome
is that no trade takes place, and both parties therefore receive zero profit from
trade. The probability that the buyer rejects the seller’s offer s is pb. A seller
who maximizes expected utility will be willing to take the risk of rejection and
make the offer s if

pbus(d) + (1− pb)us(s) > us(b) (1)

From this inequality, the critical probability pb, which would make the seller
indifferent between the two options, is given by

pb =
us(s)− us(b)
us(s)− us(d)

(2)

Similarly, the critical probability from the buyer’s perspective (the probability
that the seller will reject the buyer’s offer) is

ps =
ub(b)− ub(s)
ub(b)− ub(d)

(3)

To gain the lead over the buyer, the seller wants to achieve

pb > ps (4)

By substituting (2) and (3) and taking into account that disagreement is the
worst outcome for both parties and therefore us(d) = ub(d) = 0, condition (4)
becomes

ub(s)us(s) > ub(b)us(b) (5)
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If the seller has managed to establish condition (5), the buyer will then try
to reverse it to gain the lead again. Therefore, each side wants to maximize
the product of utilities of its offer. If both parties continue to increase that
product, the process will converge to the NBS. If the utility functions of both
sides are concave, it can be shown (Dias and Vetschera, 2019a) that the function
ub(x)us(x) is quasiconcave and therefore has a single maximum. Otherwise, if
parties use only local information, they might get stuck in a local maximum
and fail to reach the NBS.

In the framework shown in Figure 1, we extend this model to take into
account that both parties have the three options of quitting, accepting their
opponent’s offer, or continuing the negotiation with some counter-offer.

Figure 1: Framework: Decisions in one negotiation round (Seller’s perspective)

In the standard Z-H model, terminating the negotiation (which only the op-
ponent can do) leads to the disagreement outcome d, which is a bad outcome for
both parties. In our extended model, we consider that quitting the negotiation
and termination by the opponent are possibly different. Note that if in Figure
1, g (the outcome for the seller if the seller quits the negotiation) and d (the
outcome if the buyer quits) would be the same, then quitting would always be
either dominated by continuing the negotiation (if the expected outcome from
continuation were better), or dominate it (otherwise). Thus, for a constant
disagreement outcome, one of the strategies would be eliminated from consid-
eration. In particular, if the disagreement outcome is indeed the worst possible
outcome for both sides, then quitting would also be a dominated strategy for
the opponent. Therefore the whole logic of the Z-H model, which is built on the
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possibility that the opponent terminates the negotiation, would break down.
However, outside options might come up during an ongoing negotiation. A

new potential trading partner could be found, or become active. If the prospects
of dealing with the new trading partner seem to be more attractive than the
partner with whom one negotiates (and bargaining in good faith requires that
one negotiates with only one potential partner at a given time), this might
lead to termination of the negotiation. Considering the possibility that outside
options appear thus makes it possible that the opponent terminates the negotia-
tion, but it is uncertain whether that will actually happen. It is also noteworthy
that connecting the opponent’s decision to quit to an uncertain outside option
also avoids the need for a subjective interpretation of this probability (on the
relevance of removing this need, we refer to the debate between Kadane and
Larkey (1982) and Harsanyi (1982)).

In our analysis, we assume that at this moment no such dominating outside
offer exists from the perspective of the focal party (which we identify with the
seller). Thus the focal party only considers the part of the decision tree that is
enclosed in the dashed rectangle in Figure 1.

Our second extension of the standard Z-H model concerns the possibility
that the opponent continues the negotiation by making a counter-offer. Thus,
we do not consider the offer s made by the focal negotiator as a final take-it-or-
leave-it offer. The opponent might accept the focal negotiator’s offer, or make
a counter-offer and eventually the negotiation will then end in a compromise e.
The opponent might also terminate the negotiation, in which case the focal party
would receive the disagreement utility u(d) (assuming that no better outside
option for the focal party becomes available). In order to be consistent with the
notion that bargaining might continue for several rounds after making the offer
s, the probability pqb now has to refer to the possibility that the opponent (the
buyer) will quit the negotiation at any future step (not necessarily immediately
after receiving offer s).

Since e is somewhere between the offers of the two parties currently on the
table, we can write the utility of e to the seller as a linear combination of the
utilities of the two offers:

us(e) = αsus(s) + (1− αs)us(b) (6)

The buyer could also accept the seller’s offer rather than continue bargaining.
We denote the probability that the buyer accepts the seller’s offer by pab . The
expected outcome of the negotiation in case that the buyer decides not to quit
the negotiation is

pabus(s) + (1− pab )[αsus(s) + (1− αs)us(b)] = γsus(s) + (1− γs)us(b) (7)

where
γs = pab + (1− pab )αs (8)

is a parameter that can be interpreted as the seller’s confidence in its own
bargaining strength and skills. A negotiator who is very confident (has a high
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γ) will assume that the negotiation will end somewhere near its own offer (high
α), or that he/she is able to convince the opponent to immediately accept the
offer, thus increasing pab . In contrast, a more pessimistic negotiator will assume
the opposite, i.e. that eventually the opponent will prevail. We denote the
certainty equivalent of lottery (7) by zs and the expected utility that the seller
will obtain if the buyer does not quit by us(zs).

By introducing the notion of confidence, we add a descriptive element to the
model. This extension towards a more behavioral model is in line with empir-
ical literature utilizing the Z-H model (such as Svejnar, 1986), which explains
asymmetry in bargaining outcomes by differences in individual characteristics
of the parties such as risk attitudes.

We can now set up the model in a way very similar to the standard Z-H
model. The seller will prefer to continue the negotiation rather than directly
accept the buyer’s offer iff

(1− pqb)us(zs) + pqbus(d) > us(b) (9)

where pqb is the probability that the buyer quits the negotiation (e.g. because he
or she receives a better outside offer). Note that this probability refers to the
possibility that the buyer receives an outside offer that would cause him or her
to quit the negotiation. It is therefore not related to the seller’s confidence in his
or her own bargaining skills, but to the environment in which the negotiation
takes place. After rearrangement of terms, we obtain a critical probability for
the seller as

pqb =
us(zs)− us(b)
us(zs)− us(d)

(10)

Similarly, we can calculate a critical probability for the buyer as

pqs =
ub(zb)− ub(s)
ub(zb)− ub(d)

(11)

In accordance with the standard model, we interpret these probabilities as indi-
cators of the strength of the current bargaining position of each party. The seller
wishes to obtain a stronger position versus the buyer and wants to establish the
relation pqb > pqs, i.e.,

us(zs)− us(b)
us(zs)− us(d)

>
ub(zb)− ub(s)
ub(zb)− ub(d)

(12)

Since we can, without loss of generality, set the utility of the disagreement
outcome for both parties to zero, us(d) = ub(d) = 0, the inequality above
reduces to

us(zs)ub(zb)− us(b)ub(zb) > us(zs)ub(zb)− us(zs)ub(s) (13)

and therefore
us(zs)ub(s) > us(b)ub(zb) (14)
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As long as condition (14) does not hold, the seller will try to establish it. Note
that if both parties have the maximum level of confidence, i.e., γs = γb = 1,
condition (14) is equal to the condition (5) in the standard Z-H model. In (5),
only the left hand side can be influenced by the seller, so the seller will aim at
increasing the product of utilities of his or her offer, which eventually leads to the
NBS. In contrast, both sides of the inequality (14) depend on the offers of both
parties. Still, as we will show in the next section, there are situations in which
the process will lead to the NBS even if the parties are not fully optimistic.

3 Model analysis

The extended model presented in the previous section contains the standard Z-
H model as a special case for γs = γb = 1. In the opposite extreme case, if both
parties are purely pessimistic, they both assume that continuing the bargaining
process will lead them exactly to the same outcome as the opponent’s offer that
is already on the table. Thus, they are indifferent between immediately ac-
cepting the opponent’s offer and a continuation of bargaining, and their critical
probabilities are zero. For the rest of our analysis, we ignore this possibility and
assume that the confidence parameters for both sides are strictly positive and
less than one.

The NBS can be obtained even if the two parties are not fully confident, as
the following proposition shows:

Proposition 1 The bargaining process will converge to the (symmetric) NBS
if the confidence levels of both parties are equal and strictly positive.

Proof: We denote the common level of confidence by γs = γb = γ. By
substituting the definitions of us(zs) and ub(zb), inequality (14) becomes

[γus(s) + (1− γ)us(b)]ub(s) > us(b)[γub(b) + (1− γ)ub(s)] (15)

Since the term (1−γ)us(b)ub(s) cancels out and γ > 0, this is equivalent to (5).
q.e.d.

Proposition 1 already provides a hint that the outcome of the process de-
pends on the relative magnitude of the two confidence parameters rather than
on their values. The following proposition shows that this is indeed the case:

Proposition 2 If the confidence parameters of both parties are strictly positive,
the outcome of an extended ZH-bargaining model depends only on the ratio of
confidence parameters, not on their values.

Proof: Let r = γs/γb denote the ratio of the two confidence parameters.
Then inequality (15) becomes

[rγbus(s) + (1− rγb)us(b)]ub(s) > [γbub(b) + (1− γb)ub(s)]us(b) (16)

⇔ rγbus(s)ub(s)+us(b)ub(s)−rγbus(b)ub(s) > γbus(b)ub(b)+us(b)ub(s)−γbub(s)us(b)
(17)
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⇔ rγbus(s)ub(s)− rγbus(b)ub(s) > γbus(b)ub(b)− γbub(s)us(b) (18)

Dividing this inequality by γb > 0 yields the equivalent condition which depends
on r rather than γs and γb:

r(us(s)− us(b))ub(s) > (ub(b)− ub(s))us(b) (19)

q.e.d.
Note that as long as the seller’s offer is better for the seller than the buyer’s

offer, us(s) − us(b) > 0. Thus, the larger r, the easier it is to establish that
inequality. This means a seller who is more confident will make smaller conces-
sions (and end up at a better value). As s− b decreases, both sides of the above
inequality tend to 0.

For the remainder of this section, we assume that both utilities are concave.
As the simulation results in the following section will show, this assumption is
crucial for many properties of the model, and no clear predictions about the
outcome of the process can be made for non-concave utilities.

For our further analysis, we define a function f(b, s) as the difference between
the left hand and right hand side of (19):

f(b, s) = r(us(s)− us(b))ub(s)− (ub(b)− ub(s))us(b) (20)

As long as f(b, s) < 0, the seller will change s to increase its value above
zero, and if f(b, s) > 0, the buyer will change b to decrease f below zero.
We first analyze whether these changes actually correspond to concessions of
the respective parties. A concession by the seller means lowering the price s
demanded by the seller, a concession by the buyer means increasing b. Thus,
the seller has an incentive to make a concession (decrease s in order to increase
f) if

∂f

∂s
< 0 (21)

and the buyer has a incentive to make a concession (increase b in order to
decrease f) if

∂f

∂b
< 0 (22)

For our analysis, we represent the problem in b/s space and analyze in which
regions of that space the above conditions are fulfilled. Note that as soon as
s ≤ b, both sides would accept the other side’s offer, so we have to consider only
situations in which s > b. Furthermore, f(b, s) = 0 for s = b. We now show
that for r < 1, the area defined by {(b, s) : 0 ≤ b ≤ 1, 0 ≤ s ≤ 1, b < s} can be
partitioned as shown in Figure 2.

In the regions labeled A and B, the buyer needs to make a concession,
as f(b, s) > 0. Since in both regions ∂f/∂b < 0, the buyer here needs to
increase the offered price in order to decrease f . Similarly, the seller will make
a concession and decrease the demanded price in regions C and D.

The partitioning shown in Figure 2 is characterized by the following prop-
erties:
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Figure 2: Partitioning of b/s space when the utilities are concave and r < 1

10



• The curve separating regions A and B, i.e., the curve along which ∂f/∂s =
0, is monotonically decreasing and intersects with the line b = 0 at s = N ,
where N is the price in the NBS.

• The curve separating regions B and C, i.e., the curve along which f = 0,
passes through the point (b = 0, s = 1) and is monotonically decreasing.

• The curve separating regions C and D, i.e., the curve along which ∂f/∂b =
0, is monotonically increasing and intersects with the line s = 1 at b = N ,
where N is the price in the NBS.

• All three curves intersect with the line s = b at the same point.

Similarly, if r > 1, the partitioning is characterized by the following proper-
ties:

• The curve separating regions A and B, i.e. the curve along which ∂f/∂s =
0, is monotonically increasing and intersects with the line b = 0 at s = N ,
where N is the price in the NBS.

• The curve separating regions B and C, i.e. the curve along which f = 0,
passes through the point (b = 0, s = 1) and is monotonically decreasing

• The curve separating regions C and D, i.e. the curve along which ∂f/∂b =
0, is monotonically decreasing and intersects with the line s = 1 at b = N ,
where N is the price in the NBS.

• All three curves intersect with the line s = b at the same point.

Proofs of these properties are provided in the appendix. Obviously, the fact
that the lines at which partial derivatives are zero intersect with the boundaries
at the NBS, and their monotonicity together imply that for r > 1, the three
lines will intersect at a price which is larger than the Nash outcome (i.e., better
than the NBS for the seller), while for r < 1, they will intersect at a price lower
than the Nash outcome (i.e., better for the buyer).

This partitioning now allows us to make predictions about the bargaining
process. If both parties start out with their extreme positions (i.e., the buyer
offering zero, the seller demanding one), the process begins at the bottom right
corner in Figure 2. At this point, f(b, s) = 0. The buyer wants f to be negative,
the seller wants f to be positive, so both sides have an incentive to make a
concession. If the buyer makes a small concession to b = ∆, the process moves
into region C where the seller has an incentive to make a concession to move
from region C to B. Similarly, if the seller initially makes a concession to
s = 1 −∆, the buyer then has an incentive to move from region B to C. The
process thus consists of alternating concessions so that offers oscillate between
regions B and C around the curve f = 0. Ultimately, the process moves toward
the point at which all three curves intersect. Here, s = b, thus, the two parties
agree on the price.
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The process thus proceeds to the point in which all three curves intersect.
This point has several properties. The fact that both derivatives are zero at a
point in which the offers of both sides are identical implies that this outcome is
stable, since no party has a incentive to deviate from this point. We define

Definition 1: A locally stable agreement (LSA) is a value x so that for
s = x: ∂f(x, s)/∂s = 0 and for b = x: ∂f(b, x)/∂b = 0.

We use the term “locally stable agreement” rather than “equilibrium” since
the underlying incentives are different. We do not consider the moves of parties
that would lead to maximizing their utility given the opponent’s strategy, but
the moves that would lead to a reversal of the sign of f . Note that if ui(d) = 0
for i ∈ {s, b}, accepting any agreement s = b = x ∈]0, 1[ dominates quitting the
negotiation.

We also note that our definition of an LSA involves changes of offers in both
directions. In fact, once a point on the line s = b is reached, it would not be
rational for the parties to make any further concession, since the opponent would
be willing to accept the currently stated price. Our definition of an LSA thus
also considers whether parties would have an incentive to retract a concession
and toughen their position (i.e., whether the buyer has an incentive to ask for
a lower and the seller to ask for a higher price). Although such behavior would
violate the principle of bargaining in good faith, we still consider the absence of
incentives for such behavior an important characteristic of a stable bargaining
outcome. Indeed, from the definition of f in (20), we derive:

∂f(b, s)/∂s = ru′s(s)ub(s) + u′b(s)us(b) (23)

∂f(b, s)/∂b = −rub(s)u′s(b)− us(b)u′b(b) (24)

Thus, if s = b = x, the derivatives have opposite sign. If x is not an LSA, then
either ∂f(x, s)/∂s|s=x > 0, which means the seller has an incentive to ask for a
higher price, or ∂f(b, x)/∂b|b=x > 0, which means the buyer has an incentive to
ask for a lower price.

As we show in Proposition 8 in the appendix, the curves where ∂f/∂s = 0
and ∂f/∂b = 0 intersect at a point where s = b, therefore that point is an LSA.
We now provide a characterization of an LSA in terms of the agreement value:

Proposition 3 An agreement s = b = x is a locally stable agreement if and
only if x is a local extremum of W (x) = us(x)rub(x) (or equivalently W (x) =
us(x)γsub(x)γb or W (x) = us(x)ub(x)1/r )

Proof: Since the power is a monotonic function, the three functions stated
in Proposition 3 obviously take their maximum or minimum at the same values
of x. We therefore consider function us(x)rub(x).

An LSA implies that ∂f(b, s)/∂s = 0. From the definition of f in (20), we
obtain

∂f(b, s)/∂s = ru′s(s)ub(s) + u′b(s)us(b) = 0 (25)

At the intersection with s = b, therefore

ru′s(s)ub(s) + u′b(s)us(s) = 0 (26)
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must hold. Similarly

∂f(b, s)/∂b = −rub(s)u′s(b)− us(b)u′b(b) = 0 (27)

and at the intersection with s = b.

−ru′s(s)ub(s)− u′b(s)us(s) = 0 (28)

At an extremum of W (x), the first order condition W ′(x) = 0 must hold.

W ′r(x) = ru′s(x)us(x)r−1ub(x) + us(x)ru′b(x) = 0 (29)

Dividing by us(x)r−1 > 0 gives (26) as well as (28), so the two conditions are
equivalent. q.e.d.

Note that Proposition 3 does not require the assumption that both utility
functions are concave. However, this assumption is needed to demonstrate that
this LSA is unique.

Proposition 4 If the utility functions of both parties are concave, there exists
only one LSA, which corresponds to the unique maximum of W (x), denoted x∗.
Moreover no party has incentives to unilaterally deviate from x∗, i.e., f(x∗, s) <
0,∀s > x∗ and f(b, x∗) > 0,∀b < x∗.

Proof: Here we consider the function us(x)rub(x) for r ≤ 1, the proof for r ≥ 1
using us(x)ub(x)1/r is analogous. First, we show there exists a unique LSA. The
second derivative of W is:

W ′′r (x) = r(r − 1)us(x)r−2u′s(x)2ub(x)+

+ rus(x)r−1u′′s (x)ub(x)+

+ 2[rus(x)r−1u′s(x)u′b(x)]+

+ us(x)ru′′b (x)

Since r ≤ 1 and all utilities and u′s(x) are positive, the first term is not positive.
The second and fourth term are negative by concavity of the utility functions
and the third term is negative because u′b(x) < 0. Thus, at least three terms are
negative and none is positive. This means that W (x)x is a concave function,
which has a single maximum at the point x where W ′(x) = 0. In Proposition 3,
we have already shown that for any utility functions, this first order condition
is fulfilled at an LSA, and therefore this unique maximum corresponds to an
LSA. Furthermore, we have shown in Proposition 8 in the appendix that only
one point can exist at which both derivatives ∂f/∂s and ∂f/∂b are zero. So the
LSA at this maximum is also the only LSA that exists for concave utilities.

Let us now show that no party has an incentive to revert this agreement. We
show (in the Appendix) in Lemma 4 that for b < s, ∂2f/∂2s < 0 and in Lemma
3 that ∂2f/∂2b > 0. The value s = x∗ is a maximum for f(x∗, s) as a function of
s, since ∂f(b, s)/∂s|b=s=x∗ = 0 and ∂2f(b, s)/∂s2 < 0, and therefore f(x∗, s) is
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less than f(x∗, x∗) = 0 for s > x∗. Similarly, the value s = x∗ is a minimum for
f(b, x∗) as a function of b , since ∂f(b, s)/∂b|b=s=x∗ = 0 and ∂2f(b, s)/∂b2 > 0,
and therefore f(b, x∗) is greater than f(x∗, x∗) = 0 for b < x∗. q.e.d.

Thus, if the parties’ utilities are concave, the bargaining process converges
to this unique LSA, which is the nonsymmetric NBS argmaxx us(x)γsub(x)γb ,
which coincides with argmaxx us(x)rub(x) as γb > 0.

If at least one of the two utility functions is not concave, W (x) is no longer
necessarily concave and thus it might have multiple local maxima and minima.
Proposition 3 implies that the two parties do not have an incentive to move away
from a local minimum, so a local minimum would also be an LSA. However, we
note that from a point that is neither a local maximum nor a local minimum, it
is more likely that the parties move towards the local maximum of W (x) rather
than towards the local minimum.

Consider a local maximum xmax and the two neighboring local minima below
and above this maximum, denoted xmin1 and xmin2 , so that xmin1 < xmax <
xmin2 and the interval (xmin1 , xmin2) does not contain any other extrema of
W (x). Let xa be some arbitrary point xmax < xa < xmin2 . Since xa is located
above the maximum of W (x), W ′(xa) < 0, which implies ∂f/∂b > 0. Therefore
this solution would be unattractive to the buyer, who would be overpaying as
f(b, xa) would be negative for b < xa (the buyer would have an incentive to
retract from a possible agreement s = b = xa and ask for a lower price).1 Now
suppose that xa is such that xmin1 < xa < xmax. Since xa is located between
below the maximum of W (x), W ′(xa) > 0 implies ∂f/∂s > 0. Therefore this
solution would be unattractive to the seller, who would be conceding too much
as f(xa, s) would be positive for s > xa (the seller would have an incentive to
retract from a possible agreement s = b = xa and ask for a higher price).2

In summary, these results provide a characterization of the negotiation pro-
cess and the final outcome when the buyer’s and the seller’s utility functions
are concave. If the buyer and the seller are equally optimistic (r = 1) then the
process converges to the well-known NBS. Otherwise, it converges to the non-
symmetric NBS, placing more weight on the utility of the more confident party.
However, these results do not allow reaching conclusions about the outcome of
the negotiation if the utilities are not concave, where the process might e.g. lead
to a local minimum of W . This motivates the simulation study presented in the
following section.

1Suppose the buyer asks for price xa−∆. This creates a situation in which f(xa−∆, xa) <
0, so now the seller needs to move away from xa, too. Obviously, selecting s = xa −∆ would
bring the negotiation to f(xa − ∆, xa − ∆) = 0 > f(xa − ∆, xa). However, it is not clear
whether a seller acting only on local information would make that choice. For r > 1, the seller
will necessarily have to make a regular concession. From Lemma 5 in the appendix (which does
not depend on the utility functions being concave), we know that for r > 1, ∂2f/∂s∂b > 0.
Since ∂f/∂s is already negative at s = b = xa, decreasing b will further decrease it. Therefore,
the seller then will locally increase f by reducing s. However, for r < 1, it is not clear whether
the seller will have a local incentive to make a concession, or to make a reverse concession.

2In this case, Lemma 5 in the appendix allows saying that the buyer would need to accept
the price increase if r < 1, but this would not be guaranteed if r > 1.
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4 Simulation

We use a simulation analysis to explore the properties of the model for non-
concave utility functions. Specifically, we want to study whether the process
still converges to a local maximum of the nonsymmetric Nash function identi-
fied in Proposition 3, or how often it fails to do so. Furthermore, we use the
simulation to quantify the effects of the confidence parameters on the individual
outcomes of the parties, and on other properties of the agreement. The analysis
of the preceding section has shown that in the agreement, the party having the
higher level of confidence will be better off than in the (symmetric) NBS. In
the simulation study, we can quantify this effect and verify whether it will also
hold when the utility functions are not concave. Furthermore, we can study
how far the solutions deviate from the NBS, and to quantify the possible loss
in efficiency (joint utility) that results from this deviation.

For the simulation, arbitrary pairs of monotonic (but not necessarily con-
cave) utility functions were generated using the bisection approach of Dias and
Vetschera (2019b). Utility functions for both sides are represented as utility val-
ues for equally spaced prices in the zero-one interval. Since the method is based
on a bisection approach, it works most efficiently if the number of intervals is a
power of two. For the present simulation, 29 = 512 intervals were used.

Each pair of utility functions defines a problem. In total, two sets of 100,000
problems each were generated using different random number streams to check
the stability of results. For each problem, the two confidence parameters γs and
γb were varied from 0.05 to 1 in steps of 0.05, thus generating 400 combinations
of confidence parameters. Since Proposition 2 holds for arbitrary (and not
just for concave) utility functions, some of these combinations should generate
identical outcomes. They were nevertheless all included in the simulation to
test the numerical stability of the simulation, and the results confirmed that.

The bargaining process was simulated in the following way: The initial offer
of one party was set to the best outcome for that party (1 for the seller or 0 for
the buyer), and the initial offer of the other party was set to that party’s second
best outcome (1−1/512 for the seller or 1/512 for the buyer). Between problems,
the party starting with the second best outcome was alternated. Given the two
offers, the value of f was calculated to decide which party needs to make a
concession. If f < 0, the seller has to make a concession, otherwise, the buyer.
The conceding party makes a concession by moving to the first discrete price
level that would revert the sign of f (i. e., the seller moves to the highest
price smaller than its current offer that leads to f > 0, the buyer to the lowest
price above its previous offer that would lead to f < 0). Denote the current
offer of the buyer and seller by st and bt and the set of possible prices by
X = {xi} = {0, 1/512, 2/512, ...1}. The next offer st+1 of the seller is then given
by

st+1 = max
xi:xi<st∧f(bt,xi)>0

xi (30)

Concessions of the buyer are determined in an analogous way. The process
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terminates when
st+1 ≤ bt ∨ bt+1 ≥ st (31)

i.e., when one party cannot do better than accept the offer from the other party.
Since each step moves the offer of one side towards the offer of the other side, and
there is only a finite number of possible offers, the process will always converge
to a solution. This is consistent with our model, since in the model a negotiation
is only terminated if one party obtains an outside offer that is better than the
expected outcome of the negotiation.

Note that this convergence property relies on the assumption that both par-
ties bargain in good faith, i.e., they do not retract from a previously made offer.
For non-concave utilities, it could be the case that e.g. for a given offer bt of
the buyer, there exists a value s′ > st so that f(bt, s

′) > 0. Thus the seller
could achieve f > 0 by increasing, rather than decreasing, the price he or she
demands. The assumption of bargaining in good faith excludes such moves,
which could cause the process to oscillate infinitely between some offers.
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Figure 3: Partitioning or b/s space and negotiation path for non-convex utilities
and different values of r
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γb
0.05 0.35 0.65 0.95

γs global local global local global local global local
0.05 0.00 0.00 27.45 0.43 33.92 0.92 37.65 1.57
0.35 27.81 0.46 0.00 0.00 9.45 0.08 14.90 0.04
0.65 33.17 0.84 9.73 0.07 0.00 0.00 6.01 0.01
0.95 36.99 1.32 14.74 0.05 5.56 0.06 0.00 0.00

Table 1: Fraction (in %) of cases in which the process did not converge to the
global or to a local maximum of the nonsymmetric Nash function

As Figure 3 shows, the partitioning of b/s space into compact subspaces,
that existed for concave utilities, no longer exists if utilities are not concave. In
Figure 3, regions in which f > 0 (corresponding to regions A and B in Figure
2) are marked in dark gray, regions in which f < 0 (corresponding to C and D)
in light gray. Within these regions, the parts in which the partial derivatives of
f with respect to s and b are positive and negative are also scattered (we did
not depict these regions in the figure to reduce its complexity). Hollow circles
along the line s = b mark local maxima of the nonsymmetric Nash function
us(x)rub(x), the solid circle marks the global maximum. Figure 3 shows a
problem in which the process converged to the global maximum for all values
of r. Clearly, the maximum depends on r, the price in the agreement increases
for a higher r, i.e., the more confident the seller is. In the two examples with
r < 1, reaching the agreement in some cases required quite large concessions
from the seller to move across a region in which f < 0 (the long black line across
the light gray region), for example, in the negotiation with r = 1/5, the seller
had to decrease the price from about 0.76 to 0.37 in one step. Similarly, in the
negotiations represented in the lower part of Figure 3, the buyer in one step had
to make a large concession (across the dark gray region).

However, the process does not always converge to the global and sometimes
not even to a local maximum of the nonsymmetric Nash function, as the example
in Figure 4 shows. Here, the global maximum is located at approximately
s = b = 0.12, but the process converged to s = b = 0.44. The reason for this
deviation is also quite obvious from the figure: The large region around s = 0.8
in which f > 0 (marked in dark gray) forces the buyer to increase its offer up to
the level of 0.44, while the seller has to make only small concessions. Once that
level is reached, however, there is no more possibility for the seller to achieve
f > 0 at a price higher than the buyer’s offer, so the seller accepts the offer
from the buyer.

Table 1 shows the fraction of cases in which the process did not converge
to a local or the global maximum of the nonsymmetric Nash function. Here
we present only a few selected values of the two confidence parameters, the
intermediate values do not offer much additional insight and can be obtained
from the authors upon request.
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symmetric Nash function
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γb
γs 0.05 0.35 0.65 0.95

0.05 100.0 88.0 82.0 78.2
0.35 87.5 100.0 98.4 96.2
0.65 82.1 98.5 100.0 99.4
0.95 78.8 96.0 99.4 100.0

Table 2: Ratio of the nonsymmetric Nash function achieved in the agreement
to the value in the global optimum

Given the high number of local optima shown in Figures 3 and 4, it is not
surprising that the global maximum was not reached in a considerable number
of cases. As we have already shown, if the confidence parameters of the two
parties are equal, the process will always converge to the NBS (which in that
case is also equal to the nonsymmetric NBS), so in these cases, all entries are
zero. However, it should be noted that the simulation assumes that both par-
ties have full information about both utility functions and therefore will make
large concessions if such concessions are needed to reach the global maximum.
Otherwise, the existence of local maxima could prevent them from converging
to an agreement. This situation is similar to the standard Z-H model, where
local maxima could also prevent convergence to the NBS (Dias and Vetschera,
2019a). If the two confidence parameters are more imbalanced, the process fails
more often. The highest value is reached when one party is highly confident
(0.95), and the other has extremely low confidence (0.05). The situation of Fig-
ure 4, in which the process also fails to reach a local maximum, is quite rare.
Even in very unbalanced settings, it occurs in only about 1.5% of all cases.

To study whether failing to find the global maximum actually implies a large
loss in performance, we compare the value of the nonsymmetric Nash objective
that was achieved in the agreement to its global maximum.

As Table 2 shows,3 the agreement reached achieves well over 80% of the
global optimum expect when the difference between the two parties is extreme.
If both sides have a confidence parameter of more than 0.35, the process con-
verges to a solution that provides more than 95% of the global maximum and
thus in effect performs almost as well as the global optimum of the nonsymmetric
NBS.

As a final analysis, we now study the effect of differences in the confidence
values on individual and collective outcomes.

Table 3 shows that the party having the lower confidence parameter will
never be able to perform better than in the (symmetric) NBS, while the party
having the higher confidence parameter will always achieve at least the outcome
it would obtain in the NBS. The performance effect of being the weaker party

3The value of the global maximum is not the same for r = 1/2 and r = 2. Thus, to
compute the loss in performance in a balanced way, Table 2 uses the function us(x)γs/γbub(x)
for γs > γb and us(x)ub(x)γb/γs for γs < γb.
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γb
γs 0.05 0.35 0.65 0.95

0.05 min 100.0 25.1 14.4 10.1
avg 100.0 60.6 53.0 48.9

max 100.0 100.0 100.0 100.0

0.35 min 100.0 100.0 69.9 53.8
avg 128.9 100.0 84.1 75.3

max 175.0 100.0 100.0 100.0

0.65 min 100.0 100.0 100.0 81.0
avg 131.5 114.5 100.0 90.1

max 185.5 130.2 100.0 100.0

0.95 min 100.0 100.0 100.0 100.0
avg 132.5 121.0 109.4 100.0

max 189.8 146.2 119.1 100.0

Table 3: Performance of the seller relative to the seller’s outcome in the NBS
(in %) for different levels of the confidence parameters

is quite strong, both on average and in the worst case. Conversely, a party that
is much stronger can achieve almost twice the outcome it would obtain in the
NBS.

γb
γs 0.05 0.35 0.65 0.95

0.05 99.7 94.1 91.5 90.0
0.35 94.1 99.7 98.9 97.7
0.65 91.5 98.9 99.7 99.4
0.95 90.0 97.7 99.4 99.7

Table 4: Efficiency of the joint utility of the agreement (in % of the possible
maximum), for different combinations of confidence parameters

As Table 4 shows, the overall efficiency of the outcome is not affected very
strongly by differences in the confidence parameters. The table shows the joint
utility (sum of utilities of the two parties) obtained in the agreement as a fraction
of the maximum joint utility that could have been obtained in any agreement.
Since the NBS does not maximize the sum of the two utilities, the main diagonal
of that table (where the process always converges to the NBS) is below 100%.
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5 Conclusions

In this paper, we have extended the original Z-H model to consider the parties in
a more symmetric way. This symmetric treatment solves the apparent paradox
that it is on the one hand not rational to quit a negotiation, and on the other
hand a rational party considers it possible that the other (also rational) party
quits. Furthermore, we not only consider the focal party’s option to make a
new offer, but also introduce the focal party’s anticipation of future offers of
the opponent. This extension leads to the introduction of parameters γs and γb
that summarize the confidence of each party taking into account their bargaining
skills and strengths.

The analysis of the extended Z-H model presented in this article provides
a full characterization of the exchange of successive offers, as well as the pre-
dicted outcome, if the two parties have concave utility functions. In such cases,
the final outcome will be a nonsymmetric NBS, in which the utility functions
of both parties are exponentially weighted by their confidence parameters, or
equivalently, the utility of one party is weighted by the ratio of the confidence
parameters. This extension adds a descriptive element to the Z-H model and
shows how negotiator characteristics such as their confidence in their own bar-
gaining skills can systematically influence the outcome of a negotiation.

In addition, this analysis contributes another possible explanation for ob-
taining the nonsymmetric NBS. Kalai (1977) has shown that the nonsymmetric
NBS can be obtained by n-person replications of Nash’s original setting, con-
sidering that two parties represent two groups of different size. Other paths to
obtain the nonsymmetric NBS have been proposed in the context of Rubinstein
(1982)’s model, namely considering asymmetry in the parties’ discount rates,
preferences, or beliefs about determinants in the environment (Binmore et al.,
1986; Muthoo, 1999). In our case, the path to reach the nonsymmetric NBS
is based on the logic of the Z-H model, and asymmetry derives from unequal
confidence factors.

If the utilities are not concave, we can still show that any local maximum of
the nonsymmetric Nash product is a locally stable agreement, but there might be
many such maxima and the bargaining process might miss the global maximum
(or even a local maximum). The simulation study in Section 4 sheds light on
the possible outcomes of bargaining processes in such situations. The results
show that the process misses the global maximum in a considerable number of
cases, especially if there is a large imbalance in confidence between the parties.
A local maximum is reached in most of the cases, even when confidence is highly
unbalanced.

The fact that the global optimum is missed, however, might not entail a
large loss. The simulation results indicate that in most cases the bargaining
outcome reached by the parties is fairly high even in unbalanced cases, both
in terms of ratio of the nonsymmetric Nash function (compared to the global
maximum) and in terms of joint utility (sum of utilities). The loss in both cases
decreases when confidence gets more balanced.

Finally, the theoretical results obtained for the concave utilities case, as well
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as the empirical results obtained in the simulations for general utility functions,
confirm the general conclusion that the more confident party has an advantage.
The party with higher confidence will always get a result which is better than
the (symmetric) NBS (and the reverse occurs for the other party).

This article will potentially renew the interest in the strategic and axiomatic
aspects of the Z-H model, opening multiple paths for future research. One such
path will possibly be concerned with the confidence parameters γs and γb. Fu-
ture theoretical and behavioral studies can address the way these parameters
are driven by bargaining experience, expectations about the appearance of at-
tractive outside options, or other elements defining bargaining strength (time
pressure, linkage with other negotiations, etc). In the present paper, we have
assumed that these parameters are constant throughout the process. Future
developments might consider that these parameters change during the bargain-
ing process, possibly even as a function of how the process progresses. Finally,
more analytical studies could show that some specific types of non-concave util-
ity functions also lead to a single-peaked nonsymmetric Nash product, as it was
possible to observe in the original Z-H model (Dias and Vetschera, 2019a).

The model presented here could also be useful for empirical studies. It pro-
vides a connection between negotiator characteristics and bargaining outcomes.
Thus it could on the one hand be used to infer negotiator confidence from
bargaining outcomes. On the other hand, if measures of confidence (or overcon-
fidence, which has been shown to affect negotiations, see Neale and Bazerman,
1985) are available, the model makes clear predictions how these will influence
the bargaining process and its outcomes, and these predictions could also be
tested empirically.

Appendix

Proofs that b/s space can be partitioned as shown in Figure 2. This means that
for r < 1, we have to show the following properties:

• The curve separating regions A and B, i.e. the curve along which ∂f/∂s =
0, is monotonically decreasing.

• The curve separating regions B and C, i.e. the curve along which f = 0,
passes through the point (b = 0, s = 1) and is monotonically decreasing.

• The curve separating regions C and D, i.e. the curve along which ∂f/∂b =
0, is monotonically increasing.

• All three curves intersect with the line s = b at the same point.

Preliminaries

Lemma 1 For b = 0, ∂f/∂s = 0 when s corresponds to the NBS.
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Proof:
∂f

∂s
= r[u′s(s)ub(s) + us(s)u

′
b(s)] + (1− r)us(b)u′b(s) (32)

Since us(0) = 0, (32) reduces to r times u′s(s)ub(s) + us(s)u
′
b(s), which is null

if and only if [us(s)ub(s)]
′ is null. Thus, this is the point which maximizes

us(s)ub(s), i.e. the NBS.

Lemma 2 For s = 1, ∂f/∂b = 0 when b corresponds to the NBS.

Proof:
∂f

∂b
= (1− r)u′s(b)ub(s)− u′b(b)us(b)− ub(b)u′s(b) (33)

Since ub(1) = 0, (33) reduces again to the first derivative of the Nash objective
function with respect to b.

To show the relevant properties of the lines separating the different regions
in Figure 2, we have to consider the second derivatives of f :

Lemma 3 For s > b: ∂2f/∂2b > 0

Proof: From (33), we obtain

∂2f/∂2b = u′′s (b)[(1− r)ub(s)− ub(b)]− u′′b (b)us(b)− 2u′b(b)u
′
s(b) (34)

Since we assume concave utilities, all second derivatives are negative. By defi-
nition of the utilities, u′b(x) < 0 and u′s(x) > 0. Therefore the second and third
term are negative, since they have also a negative sign, their contribution to the
sum is positive. Since s > b and the buyer’s utility decreases, the second factor
of the first term is negative, so the entire term is positive. q.e.d.

Lemma 4 For s > b: ∂2f/∂2s < 0

Proof: From (32), we obtain

∂2f/∂2s = u′′b (s)[rus(s) + (1− r)us(b)] + ru′′s (s)ub(s) + 2rus(s)u
′
b(s) (35)

By a similar argument as above, the last two terms are negative. The sec-
ond factor of the first term is a weighted combination of utilities and therefore
positive, the first factor is negative, so the entire term is negative. q.e.d.

Lemma 5 The sign of ∂2f/∂b∂s = ∂2f/∂s∂b depends on r. For r > 1, it is
positive, for r < 1, it is negative.

Proof: From the first derivatives, we obtain

∂2f/∂b∂s = ∂2f/∂s∂b = (1− r)u′s(b)u′b(s) (36)

The product of the two derivatives is negative, thus the sign of (1−r) determines
the sign as indicated. q.e.d.
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Separation between regions A and B

Proposition 5 The curve in r/s space at which ∂f/∂s = 0 is monotonically
decreasing for r < 1 and monotonically increasing for r > 1

Proof: We have shown in Lemma 4 that ∂2f/∂2s < 0. For r < 1, according
to Lemma 5, ∂2f/∂b∂s < 0 Thus, an increase in s must be matched by a
decrease in b to keep the value of ∂f/∂s at zero. For r > 1, according to
Lemma 5, ∂2f/∂b∂s > 0 Thus, an increase in s must be matched by an increase
in b to keep the value at zero.

Corollary 1 The point at which this curve intersects the line s = b is above
the NBS (b = s = N) for r > 1 and below the NBS for r < 1.

Proof: As shown in Lemma 2 the curve intersects the boundary b = 0 at
s = N . When b increases, s will increase or decrease according to the above
proposition, leading to the indicated outcome.

Separation between regions C and D

Proposition 6 The curve in r/s space at which ∂f/∂b = 0 is monotonically
increasing for r < 1 and monotonically decreasing for r > 1.

Proof: We have shown in Lemma 3 that ∂2f/∂2b > 0. For r < 1, according to
Lemma 5, ∂2f/∂b∂s < 0 Thus, an increase in s must be matched by an increase
in b to keep the value of ∂f/∂b at zero. For r > 1, according to Lemma 3,
∂2f/∂b∂s > 0 Thus, an increase in s must be matched by a decrease in b to
keep the value at zero.

Corollary 2 The point at which this curve intersects the line s = b is above
the NBS (b = s = N) for r > 1 and below the NBS for r < 1.

Proof: The curve intersects with s = 1 at b = N . Decreasing s will lead
to an increase or decrease in b according to the above theorem, leading to the
indicated outcome.

Separation between regions B and C

Proposition 7 The curve f = 0 in r/s space is monotonically decreasing.

Proof: Obviously, f(0, 1) = 0, therefore the curve ends at b = 0, s =
1. There, both derivatives are negative, any decrease in s must therefore be
matched by an increase in b. As we have just shown, the two curves where the
two derivatives are zero can only intersect at the line s = b. Thus, for s > b,
there is always a corridor between the two curves in which both derivatives are
negative.
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Intersection of separating lines

Proposition 8 The curves ∂f/∂b = 0 and ∂f/∂s = 0 intersect at a point
where s = b holds.

Proof: We can rewrite the two curves from (33) and (32) as

∂f/∂b = (1− r)u′s(b)ub(s)−N ′(b) = 0 (37)

and
∂f/∂s = rN ′(s) + (1− r)us(b)u′b(s) = 0 (38)

whereN(x) is the Nash objective function us(x)ub(x), andN ′(x)) = u′s(x)ub(x)+
us(x)u′b(x). Now assume that ∂f/∂b = 0 intersects the line s = b at a point
where s = b = x. Then, we can write (37) as

∂f/∂b = (1− r)u′s(x)ub(x)−N ′(x) = 0

⇔ (1− r)u′s(x)ub(x)−N ′(x) + (1− r)N ′(x)− (1− r)N ′(x) = 0

⇔ (1− r)u′s(x)ub(x)− rN ′(x)− (1− r)N ′(x) = 0

⇔ − rN ′(x)− (1− r)us(x)u′b(x) = 0

⇔ ∂f/∂s = 0.

Therefore, at s = b = x both ∂f/∂b = 0 and ∂f/∂s = 0. Since we have
already shown that both curves are monotonic in the opposite direction, they
can intersect only at one point, so there can be no intersection at which s 6= b.

Proposition 9 The curve where f = 0 and the two curves at which the deriva-
tives are zero all intersect with the line s = b at the same point.

Proof: We have already shown that the curves at which the derivatives are
zero intersect at the line s = b. Note that at the line s = b, also f = 0 holds.
Thus we have an intersection of two lines at which f = 0. The line s = b is
monotonically increasing, which implies that the derivatives of f with respect
to the two variables must have opposite signs. The other curve at which f = 0
holds is monotonically decreasing, so along that curve the two derivatives must
have the same sign. This can only happen at the same time if both derivatives
are zero, so the two other lines at which the derivatives are zero must also go
through that point.
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