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MEAN-VARIANCE EFFICIENCY VERSUS POSITIVE 

SKEWNESS SEEKING IN PORTFOLIO SELECTION 

(Preliminary version) 

José Soares da Fonseca a) 

Abstract 

 This paper compares the performance of efficient portfolios based on the Markowitz (1952) mean-variance 

model with portfolios with high skewness. The assumption that the return of assets follows the normal 

distribution is the basis of the mean-variance model. However, the return of financial assets often deviates 

from the normal distribution, namely due to positive skewness, which may offer some advantages to 

investors. Previous literature reports several obstacles that make it difficult to include skewness in portfolio 

optimization, and that there is a trade-off between return and skewness maximization. Mean-variance 

optimization versus the search for positive skewness is addressed in this paper by estimating comparative 

performance ratios between mean-variance efficient portfolios and portfolios with high skewness. The 

paper also estimates probit models which highlight the probability of obtaining higher return from 

portfolios with  high skewness than from mean-variance optimized portfolios. The probability given by our 

estimations is, in general, relatively low, which suggests that mean-variance optimization must be preferred 

to the search for positive skewness as method of portfolio choice.  

  

Keywords: Efficient frontier; Mean-variance optimization; Portfolio selection; 

Skewness. 

JEL Classification: G10, 

 

a) University of Coimbra, CeBER, Faculty of Economics, jfonseca@fe.uc.pt. 

 

1. Introduction 

Modern financial theory began with the seminal article of Markowitz (1952), which 

proposed the mean-variance optimization model as the fundamental framework of 

portfolio choice. A significant number of papers in literature is devoted to efficient 

portfolio selection, which comprise 19000 citations of Markowitz’s paper, reported by 

Kolm et al. (2014). Several  issues about the original Markowitz model have been taken 

into consideration by literature, namely the inclusion of constraints in portfolio 

construction which, as Markowitz (1987) and Kolm et al. (2014) refer, can originate sup-

optimal portfolios. Regime shifts in asset return distributions, which occur frequently and 

can disturb the process of portfolio choice based on the Markowitz model, were object of 

a dynamic version of the model, proposed by Bae et al. (2014). 

One of the fundamental assumptions that underlies the mean-variance model is that asset 

returns follow the normal distribution.  Failure to verify this assumption, namely 

asymmetric distribution of asset returns and its consequences for portfolio selection are 

the object of this paper. Portfolio selection in the presence of positive skewness, received 
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attention of several authors, such as Kane (1982), who uses the Taylor expansion of the 

von Neumann-Morgenstern utility function to show that skewness preference reduces the 

risk premium requested by risk averter investors. Moreover, Kane(1982) underlines that 

the return bias to the right of expected return represented by  positive skewness  makes  

portfolios attractive to investors with  prudent behaviour. Following in the same direction 

as Kane’s conclusion, Chunhachinda et al.(1997) demonstrate that positive skewness 

makes portfolio selection a multi-objective problem, where investors seek, 

simultaneously, to maximize return and skewness and to minimize variance.  However, 

De Athayde and Flôres (2004) show that there is a trade-off between expected return and 

skewness if both objectives are included in portfolio optimization, and these authors also 

underline that skewness constraints hamper the computing process, given the large 

dimension of the co-skewness matrix, which is equal to N3 (N being the number of assets). 

Moreover, as Jiang et al. (2016) show, the inclusion of skewness constraint can cause loss 

in mean-variance efficiency. Given the computing difficulties caused by inclusion of 

skewness in the mean-variance portfolio selection process, Briec et al. (2016) propose a 

method for ranking portfolios based on a three-dimensional distance of expected return, 

variance, and skewness, relative to a benchmark portfolio. This paper compares mean-

variance portfolio optimization with skewness seeking, using two alternate methods. 

First, we calculate comparative performance ratios between mean-variance efficient 

portfolios and portfolios with high skewness. The performance ratios used in this method 

are based on the performance ratios of Israelson (2004) and Sharpe (1966, 1994). 

Secondly, we use probit models to estimate the probability of obtaining higher return 

from portfolios with high skewness than from mean-variance efficient portfolios. The rest 

of the paper is organised as follows. Section 2 discusses the trade-off between mean-

variance optimization and skewness maximization, and presents the methods used in the 

paper to compare mean-variance efficient portfolios with portfolios with high skewness. 

Section 3 discusses the empirical portfolio selection using a database of equity share 

returns from forty-four German firms, with monthly data from the beginning of 1999 to 

the end of 2019, comprising 252 observations of each individual series. Efficient 

portfolios based on the mean-variance model and portfolios with high skewness are 

subject to pairwise comparison by the performance comparison ratios and probability 

estimations, referred above. Section 4 sets out the conclusions. 
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2. Optimal portfolio selection under the mean-variance framework and seeking for 

skewness 

2.1. The mean-variance model and the efficient frontier 

The literature on portfolio optimization commonly accepts that, where there is 

uncertainty, investors wealth utility, ( )U W  is governed by the paradigm of maximization 

of the von Neumann-Morgenstern utility function. According to this paradigm, the 

expected utility of the final wealth can be represented by a Taylor expansion around the 

utility of the expected wealth, as follows: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

3

1
' ''

2

1
''' ...

6

E U W U W U W E W W U W E W W

U W E W W

 = + − + −    

 + − +
 

 (1) 

Expected utility can be represented as a function of wealth variance and skewness, taking 

into consideration that: 

( ) 0E W W− =                (2) 

the wealth variance is: 

( )
22

W E W W  = −
 

      (3) 

and the third-order moment, ( )
3

E W W −
 

, is strictly related to skewness, Skw, since 

( )( )

( )
3

2

31 2
W

W

E W WN
Sk

N N 

 −
 =

− −
     (4) 

 

N, being the number of observations. If, additionally, we define ( )
3*

WSk E W W = −
 

 , 

the Taylor expansion of expected utility takes the following alternate representation: 

( ) ( ) ( ) ( )2 *1 1
'' '''

2 6
W WE U W U W U W U W Sk= + +   (5) 

The second order derivative of the risk averter’s utility function, ( )''U W , is negative, 

implying that variance contributes negatively to utility, while the third order derivative, 

( )'''U W , is positive, implying that skewness contributes positively to utility. 
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The Markowitz (1952) mean-variance model neglects skewness, and the utility function 

to be maximized depends only on the portfolios’ expected return, ( )PE R  and variance, 

2

P . Markowitz (1959, 1987) suggests that the utility function of a risk averter can be 

represented by quadratic functions of wealth or return, from which results the following 

dependence of the utility function on the expected return and variance:  

 

( ) ( )2 2,

0; 0

P P P PU E R E R  

 

  = − 

 
     (6) 

or, alternately: 

( ) ( )2 2,P P P PU E R E R   = −   (7) 

where 


= , which is more suitable for quadratic programming than the previous 

representation. The common portfolio is composed of N risky assets existing in the 

economy, whose expected returns are represented as ( )iE R , i=1,…N, plus the risk-free 

asset, whose rate of return is 
fr . Hence the expected return of a portfolio is the sum of 

the expected returns of the individual assets, weighted by the corresponding proportions 

in the portfolio, xi ,i=1,…, N,  i.e.: 

 

( ) ( )
1 1

1
N N

P i i i f

i i

E R E R x x r
= =

 
= + − 

 
    (8) 

 

Portfolio variance, 2

P , is given by: 

2 2 2

1 1 1

N N N

P i i ij i j

i i j
j i

x x x  
= = =



= +   (9) 

where ( )( )
22

i i iE R E R  = −
 

is the variance of risky asset i, and 

( )( ) ( )( )ij i i j jE R E R R E R  = − −
 

 is the covariance between risky assets i and j.  

Replacing ( )PE R  and 2

P  in the utility function represented in (6) according to their 

representations in (8) and (9), respectively, gives the following representation to the 

utility function:  
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( ) ( )2 2 2

1 1 1 1 1

, 1
N N N N N

P P i i i f i i ij i j

i i i i j
j i

U E R E R x x r x x x   
= = = = =



 
     = + − − +     

  

     (10) 

To maximize this utility function, their first order partial derivatives relative to the 

proportions xi (i=1,…,N) must be equal to zero, which gives the system of N equations 

represented as follows: 

 

                    

( )

( )

( )

2

1 1 1 1 1

2

1 1

2

1 1

... ...

...

... ...

...

... ...

f i i N N

i f i i i iN N

N f N iN i N N

E R r z z z

E R r z z z

E R r z z z

  

  

  

− = + + + +

− = + + + +

− = + + + +

  
(11),   

 

where    2i iz x= , i=1,…, N
 

After solving the system of equations  represented in (11) to obtain 1z  ,…, iz ,…, Nz , the 

composition of the optimum portfolio, comprising N risky assets, is given by the 

proportions: 

1

i
Ni

k

k

z
x

z
=

=


, i=1,…,N, which implies 

1

1
N

i

i

x
=

= . The portfolio of risky 

assets with this composition is represented by point M in Figure 1, where the capital 

market line (CML) is tangent to the efficient frontier (EF).  

Insert Figure 1 about here 

Each point of the capital market line represents the expected return and variance of a 

portfolio combining efficient portfolio M (commonly designated in literature as market 

portfolio) with the risk-free asset, whose interest rate, 
fr , is the intercept of CML with 

the vertical axis. Repeating the calculations described above, using an arbitrary value ar  , 

instead of the risk-free interest rate, 
fr , in the system of equations (11), we can determine 

the composition of another portfolio over the efficient frontier, represented as aEFP in 

Figure 1. After having determined the compositions of two portfolios, a and b, over the 

efficient frontier, represented by their vectors of proportions, respectively 
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( ) ( ) ( ) ( )
1 ,..., ,...,

a a a a

i NX x x x   =
   

and ( ) ( ) ( ) ( )
1 ,..., ,...,

b b b b

i NX x x x   =
   

, the composition of every 

other portfolio c, over the efficient frontier, can be obtained through the linear 

combination of vectors 
( )a

X 
 

and 
( )b

X 
 

, as follows: 

( ) ( ) ( ) ( )
1

c a b
X X X      = + −
     

(12) 

2.2 The trade-off between mean-variance optimization and skewness maximization 

Combining mean-variance with skewness in a single model of portfolio choice raises a 

complex, three-dimensional problem for portfolio optimization, where the purpose of 

investors is to maximize the following type of utility function: 

( ) ( )2 2, ,

0; 0; 0

P P P P P PU E R Sk E R Sk   

  

  = − + 

  
    (13) 

where positive skewness 0PSk   is added to the mean-variance utility function. The 

maximization of the three-dimensional utility function represented above raises several 

problems reported by De Athayde and Flôres (2004), the first of all being the program 

computing difficulties caused by the large dimension of the co-skewness matrix, which 

makes it very difficult to include in an optimization program. Given the number of assets 

N, the size of the co-skewness matrix is N3, where the total number of distinct values is 

given by the total combinations of three elements with repetition out of N, i.e. 
2

3

N + 
 
 

. 

The general element of the co-skewness matrix is 

( )( ) ( )( ) ( )( )ijk i i j j k kCoSk E R E R R E R R E R = − − −
 

, i,j,k=1,…,N . Specific cases of 

the co-skewness matrix are ( )( )
3

iii i iCo E R E R = −
 

, and

( )( ) ( )( )
2

iij i i j jCoSk E R E R R E R = − −
 

. Another difficulty in including expected 

return, variance, and skewness, together, in portfolio optimization, reported by De 

Athayde and Flôres (2004), is the absence of a complete solution for the problem, 

because, as these authors show, for any  given value of variance, there is a trade-off 

between maximizing expected return or skewness. To overcome this difficulty, Briec et 

al. (2016) propose portfolios ranking according to their ability to maximize a three-
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dimension distance to a benchmark portfolio. Expected return and positive skewness 

contribute positively to the three-dimension distance, while variance contributes 

negatively. However, as the authors, themselves, report, this method does not guarantee 

that an optimum solution for the utility function is obtained. 

 

2.3 Calculation of performance comparison ratios between mean-variance efficient 

portfolios and portfolios with high skewness 

As referred in the introduction, this paper calculates performance comparison ratios 

between mean-variance efficient portfolios and portfolios with high skewness.  The 

pairwise comparison is based on the Israelson (2004) ratio, which innovates the Sharpe 

(1966, 1994) ratio. While the Sharpe Ratio measures portfolio performance using the risk-

free assets as benchmark, Israelson (2004) extends the benchmarks to risky assets. The 

innovation of the Israelson (2004) Information Ratio proposed in this paper consists of 

calculating performance ratios dependent on financial market conditions, which are not 

taken into consideration in the Israelson Information Ratio. Based on the stock market 

return, we calculate an upside market Information Ratio, corresponding to the market 

index return sub-sample above the mean, and a downside market Information Ratio, 

corresponding to the market index return sub-sample below the mean. The advantage of 

information ratios dependent on financial market conditions is that they indicate which 

portfolios offer better protection against loss risk in downside market conditions, and 

which are more able to benefit from expansion periods in financial markets. To calculate 

the information ratio we take the difference between the return of an efficient portfolio,

,EP tR ,and the return of a portfolio with high skewness, 
,HS tR , where t is the period  in 

which these values were observed: 

 

( ), ,t EF t HS tD R R= −  (14) 

 

The mean and standard-deviation of the return difference, defined above, are, 

respectively: 

 

1

T
t

t

D
D

T=

=  (15) 

and 
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( )
2

1

ˆ
1

T
t

t

D D

T


=

−
=

−
 (16) 

 

where T is the number of observations. The Information Ratio, IR is defined as follows 

 

ˆ

D
IR


=  (17). 

If the return differences 
tD are identically and independently distributed, the difference 

between the sample mean and expected value, ( )D E D− , follows asymptotically a 

normal distribution with zero mean and standard deviation ˆ T . Hence, the 

Information ratio can be subject to the t Student’s statistics test: 

 

( )
ˆ

D
T IR T



 
=  

 
 (18) 

Taking into consideration the significance level of the test statistics, if the Information 

Ratio is positive and significantly different from zero, the efficient portfolio performs 

better than the portfolio with high skewness. Otherwise, if the Information Ratio is 

negative and significantly different from zero, the portfolio with high skewness performs 

better than the efficient portfolio. Finally, the result is inconclusive when the Sharpe ratio 

is not significantly different from zero. 

 

2.3 Comparison between mean-variance efficient portfolios and portfolios with high 

skewness by probit models 

The trade-off between mean-variance optimization and skewness maximization makes 

them alternate instead of complementary objectives. In these circumstances it is 

reasonable to choose the portfolio with high probability of offering a higher return than 

the other. This paper estimates probit models to extract the probability that the return of 

a portfolio with high skewness, 
,HS tR  exceeds the return of a mean-variance efficient 

portfolio, 
,EF tR . To conduct the estimations, we create binary variables, ty  , which take 

two alternative values, 1ty =  if 
, ,HS t EF tR R and 0ty =  otherwise.  The estimations are 
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conducted using a latent variable *

ty , dependent on exogenous variables, tX . The relation 

between ty  and the latent variable is defined as follows 1ty =  if  * 0ty  and 0ty =

otherwise, thus implying that ( ) ( )1 1*

t tProb y Prob y= = = . The relation between the 

latent variable and the exogenous variables is a linear relation, *

t t ty X  = + ,  where t is 

the residual term, which by assumption follows a normal distribution with zero mean and 

constant standard deviation  ,i.e., ( )0,t N  . According to relation between ty  and 

*

ty  described above, ( ) ( )1 1t t tProb y Prob X  = = +  . The symmetry of the normal 

distribution and the statistical properties of t , imply that ( )1t tProb X  +  is given by: 

 

t t tX X
Prob

  


  

   
 =   

   
 (19) 

 where 

21

22

tX
tX z

exp dz



 −

 − 
=   

   
  (20) 

i.e., tX 




 
 
 

is the cumulative value of the standard normal distribution ( )0,1z N at 

the limit tX  . The likelihood function, L, to estimate   is defined as follows: 

1

1
1

t ty y
m

t t

t

X X
L

 

 

−

=

    
=  −    

     

 (21) 

and the estimations are conducted through the maximization of the logarithm of L: 

( ) ( )
1

ln 1 1
m

t t
t t

t

X X
L y y

 

 =

     
=  + − −     

     
 (22) 

Once the parameter   is estimated, ( )1tProb y =  for each value tX is given by the 

standard normal distribution. 

The probit models in this paper seek to estimate the probability of a portfolio with high 

skewness offering higher return than a mean-variance efficient portfolio. Several 

preliminary estimations showed that the best fit was obtained using, as explanatory 

variable, the third moment of the market index return, scaled through its division by 3

M
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, where M is the standard-deviation of the return of the stock market index. Hence, the 

explanatory variable used to estimate the probit models is ( )
3 3

t M ,t M MX R R = − , which 

is strictly related to market index skewness. 

 

3 Empirical results 

 

3.1 Data presentation and descriptive statistics  

The database used in this paper comprises monthly data of the return on the capital equity 

shares of forty-four German firms, from January 1999 to December 2019, giving a return 

series composed of 252 observations per firm. The monthly return series of the German 

stock price index DAX 40, covering the same period, is the variable used to identify the 

upside and downside market in the calculation of the Information Ratio of performance 

comparison between alternate efficient portfolios, and to construct the explanatory 

variable used in the estimation of probit models. The descriptive statistics of the return 

series of individual firms, comprising mean, standard-deviation, skewness, kurtosis, 

Jarque-Bera test statistics, and the corresponding significance levels are shown in Table 

1.  

 

Insert Table 1 about here 

 

 

3.2 Mean-variance portfolio selection and the inverse relation between expected return 

and skewness in efficient portfolios 

The determination of mean-variance efficient portfolios, by applying the procedure 

described in section 2.2, provides the efficient frontier plotted in Figure 2, which shows 

the optimum combinations of expected return and variance that can be reached in the 

market under study in this article. Figure 3 plots the relation between skewness and 

expected return. To plot this curve, we used data of fifty efficient portfolios covering both 

the upside and the downside segments of the efficient frontier. The correlation between 

expected return and skewness in this group of efficient portfolios is negative: – 0.822. 

Figure 3, where expected return is represented in the horizontal axis and skewness in the 

vertical axis, illustrates that there is an inverse relation between them, except for a small 
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segment, thus confirming the trade-off between expected return and skewness reported in 

previous literature.  

 

 

Insert Figure 2 about here 

Insert Figure 3 about here 

 

3.3 Performance comparison between efficient portfolios and portfolios with positive 

skewness and positive expected return 

Figure 3 also shows that, in the efficient frontier given by the database used in this article, 

it is not possible to combine positive expected return with positive skewness. 

Consequently, to compare the performance of mean-variance efficient portfolios with 

other portfolios that have both positive skewness and positive expected return, we 

selected the latter outside the efficient frontier. 

We used four efficient portfolios in this comparison, all on the upside segment of the 

efficient frontier, i.e., with positive expected return. Variance is the criterion of choice of 

these portfolios, with the purpose of being representative of the entire spectrum of 

variance that can be found on the entire efficient frontier. The values of variance of this 

group of efficient portfolios, hereinafter designated respectively as EP1, EP2, EP3 and EP4 

are: 2

1 0,200%EP = , 2

2 0,400%EP = , 2

3 0,600%EP = and 2

4 0,800%EP = . The 

descriptive statistics of this group of efficient portfolios, represented in Table 2, show that 

their skewness, kurtosis, and Jarque-Bera statistics are not significantly different from 

zero, taking into consideration that their significance levels are above 5%. Hence, these 

statistics suggest that the return of the efficient portfolios follows the normal distribution. 

 

Insert Table 2 about here 

 

The five assets with the highest skewness, shown in Table 1, were chosen for performance 

comparison with the four efficient portfolios described above. Those individual assets, 

hereinafter called HS assets, are identified in column (1) of Table 1, respectively as A1, 

A19, A35, A36 and A41. The results of the comparative performance information ratio 

between efficient portfolios and high skewness assets, described in sub-section 2.2, are 

represented in Table 3, which shows the Information Ratio, and the corresponding 
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significance level for the entire return spectrum and for the upside and downside market 

described above. 

 

Insert Table 3 about here 

 

IR is positive in all the calculations covering the entire return spectrum, and fifteen out 

of twenty ratios calculated are significantly different from zero, using the significance 

level of 5% as the critical level. In downside market, all information ratios are positive 

and significantly different from zero, meaning that, in all the pairwise comparisons, 

efficient portfolios perform better than HS assets. Conversely, in upside market 

conditions, eleven out of twenty ratios are negative, but only three of them are 

significantly different from zero, and nine ratios are positive, but only four of them are 

significantly different from zero. According to these results, and given the explanations 

about IR, presented in sub-section 2.2., all efficient portfolios perform better than HS 

assets in downside market and, in most of the cases, when the entire return spectrum is 

considered. In upside market conditions it is not clear that one of the two types of 

portfolios performs better than the other. The other particularity of the results obtained in 

the upside market is to include the small number of cases in which HS portfolios perform 

better than efficient portfolios.  

 

3.4 Results of the comparison between efficient portfolios and HS assets with probit 

models 

In the estimation of probit models, we intend to assay the likelihood of the return of an 

HS asset exceeding the highest return of the four efficient portfolios used in the 

comparison, hereinafter called Prob(RHS>max(REP)) . This procedure takes into 

consideration that, in our sample, the return of each HS asset exceeds, on average, the 

return of four efficient portfolios by 41% of the total observations, while the cases in 

which its return was between the best and the worst return of efficient portfolios amount 

to only about 3% of total observations. The binary variable used in the estimations takes 

the value 1ty = if ( ), ,maxHS t EF tR R and, 0ty = otherwise, ( ),max EF tR being the 

maximum return of efficient portfolios observed at period t. 
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As explained above, after some preliminary estimations, the explanatory variable chosen 

for probit final estimations is ( )
3 3

t M ,t M MX R R = −  .The results of the probit model 

estimations, represented in Table 4, show that only HS assets A1, A35, and A36  have all 

the coefficient estimators significantly different from zero. Therefore, only these assets 

are used for estimating the Prob(RHS>max(REP)). 

Insert Table 4 about here 

 

Insert Figure 4 about here 

Figures 4.a, 4.b, and 4.c plot the relation between Prob(RHS>max(REP)) and the 

explanatory variable ( )
3 3

t M ,t M MX R R = − (called in the Figures, for the sake of 

simplification,  Market Index Return 3rd Moment).  Those figures illustrate that 

Prob(RHS>max(REP)) varies positively with ( )
3 3

M ,t M MR R − . Most of the values of the 

explanatory variable fall in the segment [-5,+5]. Consequently, Prob(RHS>max(REP)) 

values associated with this segment of values of the explanatory variable are the most 

representative of the probability of an HS asset having higher return than efficient 

portfolios. Prob(RHS>max(REP)) corresponding to the left and right limits of the range  [-

5,+5] referred above are 6.3% and 70.45%, respectively, in HS A1, 16% and 50%, 

respectively, in HS A35, and 23,5% and 46,11%, respectively, in HS A36. Consequently, 

the most frequent values of Prob(RHS>max(REP)) are less than 50%, and values above 

occur hardly ever. 

Conclusions 

The Markowitz mean-variance model represented the most important reference of 

literature on portfolio selection in the last almost  70 years. Deviations of asset returns 

from normal distribution led several authors to discuss the inclusion of complementary 

objectives in the mean-variance model. Positive skewness is one of those objectives, 

because it may be relevant to cautious investors. However, as previous literature reports, 

there is a trade-off between expected return and skewness that generates incompatibility 

between the two objectives in optimization procedures based on the mean-variance 

model.  
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The results of the empirical analysis conducted in this paper confirm that expected return 

and skewness vary inversely in mean-variance efficient portfolios. Moreover, efficient 

portfolios with positive expected return have negative skewness. The tests also show that 

one cannot reject the hypothesis that the return of efficient portfolios follows the normal 

distribution. This result suggests that diversification in efficient portfolios significantly 

reduces the impact of high skewness that may be present in individual assets. 

The performance comparison between efficient portfolios and portfolios with positive 

skewness, shows that the first perform better in general market conditions and offer better 

protection in negative conditions of the financial market. Only few cases of better 

performance of portfolios with high skewness were found, when the financial market is 

booming. 

Finally, it is estimated that the likelihood of the return of portfolios with high skewness 

exceeding the return of efficient portfolios is most frequently below 50%, and values 

above this hardly ever occur. This result confirms that mean-variance optimization is 

preferable to positive skewness seeking as method for selecting portfolios. 
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Table 1. Descriptive statistics of individual security returns 

  Mean St. Dev T Stat Sig .(T Stat.) Skewness Sig.(Skew.) Kurtosis Sig.(Kurt.) Jarque-Bera Sig .(J. Bera) 

A1 SAP 0.01148 0.11459 1.59001 0.11309 1.80453 0.00000 12.80308 0.00000 1857.91385 0.00000 

A2 SIEMENS 0.00913 0.09407 1.54048 0.12470 0.19211 0.21586 1.74327 0.00000 33.45933 0.00000 

A3 DAIMLER 0.00235 0.09463 0.39502 0.69316 0.16383 0.29124 1.14748 0.00025 14.95265 0.00057 

A4 ALLIANZ 0.00366 0.09484 0.61299 0.54044 -0.04861 0.75418 4.18775 0.00000 184.24041 0.00000 

A5 VOLKSWAGEN 0.00991 0.10820 1.45466 0.14701 -0.36038 0.02025 3.19507 0.00000 112.64345 0.00000 

A6 DEUTSCHE TELEKOM 0.00097 0.08472 0.18212 0.85563 0.49964 0.00129 4.45319 0.00000 218.70939 0.00000 

A7 ADIDAS 0.01330 0.08000 2.63864 0.00884 -0.21456 0.16691 0.38889 0.21398 3.52145 0.17192 

A8 BASF 0.00846 0.07477 1.79616 0.07367 -0.10353 0.50481 0.62754 0.04493 4.58517 0.10101 

A9 BAYER 0.00663 0.08258 1.27485 0.20354 -0.18249 0.23975 1.12085 0.00034 14.58981 0.00068 

A10 BMW 0.00776 0.08435 1.46138 0.14516 -0.00270 0.98611 0.50991 0.10322 2.73040 0.25533 

A11 DEUTSCHE BANK -0.00083 0.10849 -0.12152 0.90338 0.34547 0.02604 3.43382 0.00000 128.81928 0.00000 

A12 MUENCHENER RUCK. 0.00459 0.08278 0.88006 0.37967 0.76352 0.00000 12.40238 0.00000 1639.58468 0.00000 

A13 E ON N 0.00111 0.07508 0.23555 0.81398 -0.33742 0.02973 1.39247 0.00001 25.14118 0.00000 

A14 RWE 0.00177 0.08746 0.32197 0.74775 -0.11191 0.47095 1.36598 0.00001 20.11802 0.00004 

A15 BEIERSDORF 0.00853 0.06029 2.24601 0.02557 0.16030 0.30176 0.35926 0.25096 2.43446 0.29605 

A16 CONTINENTAL 0.01235 0.10550 1.85849 0.06427 -0.30145 0.05214 5.65874 0.00000 340.04037 0.00000 

A17 MERCK KGAA 0.00976 0.07661 2.02143 0.04430 -0.03409 0.82615 0.79931 0.01064 6.75727 0.03409 

A18 HENKEL 0.00684 0.05738 1.89129 0.05974 -0.32795 0.03463 0.55288 0.07728 7.72678 0.02100 

A19 
ENBW ENGE.BADEN-
WURTG. 0.00283 0.05622 0.79788 0.42569 1.88580 0.00000 7.91408 0.00000 807.00565 0.00000 

A20 FRESENIUS MED.CARE 0.00810 0.08350 1.53928 0.12500 0.73968 0.00000 6.29591 0.00000 439.18286 0.00000 

A21 HANNOVER RUECK 0.00991 0.07624 2.06441 0.04001 -0.18499 0.23336 3.43445 0.00000 125.28918 0.00000 

A22 HEIDELBERGCEMENT 0.00614 0.09838 0.99087 0.32270 -0.03379 0.82766 1.83885 0.00000 35.55251 0.00000 

A23 FRESENIUS 0.01076 0.08806 1.93990 0.05351 0.75011 0.00000 7.91799 0.00000 681.92495 0.00000 

A24 COMMERZBANK -0.00435 0.13186 -0.52366 0.60097 0.19906 0.19972 2.62426 0.00000 73.97501 0.00000 

A25 DEUTSCHE LUFTHANSA 0.00404 0.09366 0.68495 0.49401 -0.28719 0.06429 0.35900 0.25131 4.81735 0.08993 

A26 PUMA 0.02066 0.09400 3.48880 0.00007 0.60165 0.00011 1.96015 0.00000 55.54616 0.00000 

A27 SARTORIUS 0.02390 0.11533 3.28951 0.00115 0.61241 0.00008 3.09083 0.00000 116.06064 0.00000 

A28 BOSS (HUGO) 0.01022 0.10274 1.57874 0.11566 -0.26155 0.09200 1.91087 0.00000 41.21314 0.00000 

A29 CECONOMY -0.00069 0.09802 -0.11108 0.91164 0.23114 0.13648 1.08429 0.00053 14.58852 0.00068 
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  Mean St. Dev T Stat Sig .(T Stat.) Skewness Sig.(Skew.) Kurtosis Sig.(Kurt.) Jarque-Bera Sig .(J. Bera) 

A30 FIELMANN 0.00973 0.06261 2.46725 0.01428 -0.18815 0.22547 0.16117 0.60654 1.75961 0.41486 

A31 FUCHS PETROLUB 0.01672 0.08594 3.08903 0.00223 0.17346 0.26380 2.93747 0.00000 91.86562 0.00000 

A32 

PORSCHE 

AML.HLDG.PREF. 0.01159 0.11161 1.64773 0.10066 0.71853 0.00000 6.01380 0.00000 401.42503 0.00000 

A33 RHEINMETALL 0.01219 0.11197 1.72887 0.08506 0.57493 0.00021 2.84276 0.00000 98.73629 0.00000 

A34 THYSSENKRUPP 0.00476 0.10705 0.70525 0.48131 -0.04891 0.75269 0.61526 0.04929 4.07518 0.13034 

A35 TUI 0.00310 0.12810 0.38367 0.70155 1.90534 0.00000 15.61306 0.00000 2712.03426 0.00000 

A36 1&1 DRILLISCH 0.01879 0.18227 1.63653 0.10298 1.18713 0.00000 4.39859 0.00000 262.33977 0.00000 

A37 ADIDAS (XET) 0.01326 0.08092 2.60200 0.00982 -0.24204 0.11893 0.37971 0.22499 3.97445 0.13707 

A38 AIXTRON 0.01281 0.17016 1.19469 0.23334 0.20821 0.17983 0.32539 0.29843 2.93244 0.23080 

A39 AURUBIS 0.00978 0.08194 1.89490 0.05925 -0.16981 0.27399 0.43494 0.16458 3.19733 0.20217 

A40 AXEL SPRINGER 0.00674 0.07690 1.39120 0.16540 0.33407 0.03139 1.33526 0.00002 23.40795 0.00001 

A41 

COMPUGROUP 

MEDICAL N 0.02494 0.12366 3.20121 0.00155 1.34930 0.00000 5.04135 0.00000 343.32544 0.00000 

A42 DAIMLER (XET) 0.00237 0.09459 0.39799 0.69097 0.20484 0.18697 1.34637 0.00002 20.79570 0.00003 

A43 DMG MORI 0.01482 0.11101 2.11998 0.03499 0.11789 0.44758 1.79472 0.00000 34.40448 0.00000 

A44 DUERR 0.01193 0.10623 1.78311 0.07578 0.27631 0.07507 0.93823 0.00272 12.44934 0.00198 

 

 

Table 2. Descriptive statistics of mean-variance efficient portfolios 

 
Mean St. Dev Variance T .Stat Sig .(T Stat.) Skewness Sig.(Skew.) Kurtosis Sig.(Kurt.) Jarque-Bera Sig .(J. Bera) 

EP1 0.02525 0.02525 0.00201 8.94567       0.00000 -0.18708       0.22814 0.44247       0.15739 3.52556 0.17157 

EP2 0.03643       0.06337 0.00402 9.12451 0.00000 -0.21108       0.17388 0.27672       0.37655 2.67539 0.26245 

EP3 0.04469       0.07761 0.00602 9.13964 0.00000 -0.22174       0.15316 0.18705       0.55004 2.43237       0.29636 

EP4 0.05155       0.089621 0.00803 9.13148       0.00000 -0.22762       0.14255 0.13086       0.67583 2.35583       0.30792 
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Table 3: Comparative Performance Information Ratio (IR) between efficient portfolios and high skewness 

portfolios 

Eff. 

Portfolio 

HS 

Asset 
Financial Market Conditions 

Entire return spectrum Upside market Downside market 

IR Value 

Sig. 

Level IR Value 

Sig. 

Level IR Value 

Sig. 

Level 

  

 

EP1 

A1 0.11728 0.06380 -0.25566 0.00482 0.65364 0.00000 

A19 0.30742 0.00000 0.32541 0.00038 0.29062 0.00143 

A35 0.16279 0.01033 -0.17359 0.05359 0.56194 0.00000 

A36 0.03578 0.57060 -0.31106 0.00066 0.52267 0.00000 

A41 0.00269 0.96598 -0.16321 0.06932 0.20392 0.02376 

 

 

EP2 

A1 0.20517 0.00128 -0.11368 0.20432 0.64943 0.00000 

A19 0.40780 0.00000 0.49643 0.00000 0.32537 0.00038 

A35 0.23582 0.00023 -0.04615 0.60536 0.56619 0.00000 

A36 0.09677 0.12575 -0.21961 0.01506 0.53999 0.00000 

A41 0.09751 0.12288 -0.02779 0.75558 0.24619 0.00658 

 

 

EP3 

A1 0.26219 0.00004 -0.01567 0.86070 0.63435 0.00000 

A19 0.45683 0.00000 0.58617 0.00000 0.33781 0.00023 

A35 0.28316 0.00001 0.04056 0.64966 0.56216 0.00000 

A36 0.14009 0.02705 -0.15293 0.08853 0.54579 0.00000 

A41 0.16350 0.01000 0.07091 0.42759 0.26976 0.00299 

 

 

EP4 

A1 0.30358 0.00000 0.05978 0.50343 0.61798 0.00000 

A19 0.48552 0.00000 0.64288 0.00000 0.34250 0.00019 

A35 0.31787 0.00000 0.10699 0.23203 0.55573 0.00000 

A36 0.17436 0.00606 -0.09878 0.26962 0.54688 0.00000 

A41 0.21366 0.00081 0.14955 0.09570 0.28455 0.00178 
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Table 4: Probit model estimations of the probability that HS portfolios return exceeds efficient portfolios 

return 

HS 

portfolio 

Explanatory 

variable 

Coefficient 

(Stat. error in 

brackets) 

Likelihood Ratio 

test of coefficients 

(Sig. level  in 

brackets) 

Log Likelihood of 

estimation 

 

A1 

Constant -0.4829 *** 

(0.0864) 

 

29.4481  

(0.0000) 

 

-143.5173 

( )
3

3

M ,t M

M

R R



−
 

0.20993*** 

(0.05675) 

 

A19 

Constant -0.60560 *** 

(0.0849) 

 

0.3119 

(0.5765) 

 

-147.771 

( )
3

3

M ,t M

M

R R



−
 

-0.00880 

(0.01587) 

 

A35 

Constant -0.5012 *** 

(0.0848) 

13.9427 

(0.0002) 

-148.9459 

( )
3

3

M ,t M

M

R R



−
 

0.09871*** 

(0.03541) 

 

A36 

Constant -0.4102  *** 

(0.0827) 

10.1610 

(0.0014) 

-156.0053 

( )
3

3

M ,t M

M

R R



−
 

0.06255*** 

(0.02260) 

 

A41 

Constant -0.3491 *** 

(0.0810) 

1.1657 

(0.2803) 

-164.2390 

( )
3

3

M ,t M

M

R R



−
 

0.01739 

(0.01662) 
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Figure 2: Efficient frontier of the 

German stock market
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Figure 3: Expected  Return and Skewness of 

Efficient Portfolios
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Figures 4.a, 4.b and 4.c: Probability of HS asset return to exceed efficient portfolio return 

Figure 4.1 Probability of HS asset A1 return to exceed efficient portfolios return 

 

Figure 4.2 Probability of HS asset A35 return to exceed efficient portfolio return 

 

Figure 4.3 Probability of HS asset A36 return to exceed efficient portfolio return 
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